MAXIMAL LP-REGULARITY FOR FRACTIONAL DIFFERENTIAL
EQUATIONS ON THE LINE

VERONICA POBLETE AND RODRIGO PONCE

ABSTRACT. We characterize the LP-maximal regularity of an abstract fractional differential
equation with delay on the Lebesgue spaces. The method is based on the theory of operator-
valued Fourier multipliers and weighted Sobolev spaces on the line.

1. INTRODUCTION

In this paper, we consider the following fractional differential equation with delay
(1.1) D%u(t) = Au(t) + Fu, + f(1), teR,

where A is a closed linear operator defined on a Banach space X, f € LP(R; X), 1 < p < o0
and the fractional derivative for @ > 0 is taken in the sense of Caputo. Here the delay F :
LP([-r,0]; X) — X is supposed to be a bounded linear operator, and u(-) = u(t + -). Recent
investigations into physics, engineering, biological sciences and other fields have demonstrated
that the dynamics of many systems are described more accurately using fractional differential
equations and that fractional differential equations with delay are often more realistic to describe
natural phenomena than those without delay [27, 28, 43, 44].

We notice that in the case F' = 0, the fractional differential equation (1.1) is equivalent to the
integral equation

(1.2) u(t) = / a(t — s)[Au(s) + f(s)lds, teR,

ta—l

where a(t) = T = Ja(t). The study of maximal regularity on LP(R;X) for the integral
equation (1.2) (in the sense that for all f € LP(IR; X) there exists a unique strong solution u of
equation (1.2)), for general kernels a € L'(R.), goes back to Ph. Clément and G. Da Prato,
[16]. However, since g, & L*(R ), the results in [16] are not applicable to equation (1.1). When
F # 0, the equation (1.1) can not be equivalent to an integral equation. A complete study of
equations in the form of (1.2) can be found in the monograph [40]. We remark that the behavior
of fractional differential equations with and without delay are completely different, even in the
case when F' is a bounded operator, see [31]. To the knowledge of the authors, time fractional
differential equations in LP(R; X') and with delay have not been studied until now. Moreover,
we notice that one of the difficulties is to determine the right definition of fractional derivative
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to be used in this case. Here, we consider the so-called Caputo (or Weyl) fractional derivative
[25].

Time fractional differential equations with delay on periodic Lebesgue spaces Lf (X), (X
being a UMD space and 1 < p < oo0) have been treated in [7, 8, 9, 10, 24, 31]. See also
11, 12, 13, 15, 32, 33, ?, 38, 39].

In [3], Arendt and Duelli study the LP-maximal regularity to equation (1.1) when « = 1, that
is,

(1.3) u'(t) = Au(t) + f(1), teR.

The authors showed, using Weis’s operator valued Fourier multiplier theorem [42], that if X
is a UMD space, then the problem (1.3) is maximal LP-regular (1 < p < oo) if and only if
the operator A is R-bisectorial and invertible. This result extends Mielke’s characterisation of
maximal LP-regularity of (1.3) when the underlying space is a Hilbert space, see [35]. Applying
this results, the authors study the second-order problem

(1.4) u"(t) = Au(t) + f(t), t e R,

by transforming this equation into a first-order system. Other approaches of maximal regularity
to equation (1.3), using interpolation spaces, can be found in [45].

Maximal regularity on LP(.J; X) where J = [0,T],T > 0, or J = [0, 00) to fractional differential
equation (1.1) and have been studied, see for example [6, 19, 23].

In this paper, we study the problem of characterize the LP-maximal regularity of the fractional
differential equation with delay (1.1) in LP(R; X), the vector-valued LP-spaces for 1 < p < co.

The paper is organized as follows. In Section 2, we review some results about vector-valued
Fourier multipliers and we recall the definition and some basic properties on fractional calculus.
Section 3 is devoted to our main result (Theorem 3.9), where a characterization of maximal reg-
ularity of problem (1.1) is obtained under some suitable assumptions. Finally, some applications
are examined in Section 4 and 5.

2. PRELIMINARIES

Let X and Y be complex Banach spaces. We denote the space of all linear and bounded
operators from X to Y by B(X,Y). In the case X =Y, we will write briefly B(X). Let A be
an operator defined on X. We will denote its domain by D(A), its domain endowed with the
graph norm by [D(A)], its resolvent set by p(A), and its spectrum set by o(A4) = C\ p(4).

For n € NU{0} U {00}, C"(R; X) denotes the set of X-valued functions which are n-times
differentiable on R.

Given a > 0, the Liowwville fractional integrals of order o, D_*f and D[“f are defined,
respectively, by

t — g a—1
(2.1) DZ%f(t) :== / (trwz)f(s)ds, t €R,
and

© (g a—1
(2.2) DIOf(t) = /t (F(ta))f(s)ds, teR.
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A sufficient condition for that the fractional integrals (2.1) and (2.2) exist is that f(t) =
O(|t|=@7€) for € > 0 and t — oo. Integrable functions satisfying this property are sometimes
referred to as functions of Liouville class, see [36].

The Caputo left and right-sided fractional derivatives, corresponding to those in (2.1) and
(2.2) are defined, respectively, by

S e ARPYP A (k) Lt
D2 f(t):=D_ @f(t) —/Oo Wf (s)ds

and
s — t)nfafl

D £(6) = (1" D3 ) = o [ e

where t € R, f € C"(R; X) and n = [a]. Here [«] denotes the smallest integer greater than or
equal to a. More details of Caputo fractional calculus can be found in [25, Section 2.4] and [14].

We notice that the Caputo fractional calculus can also be applied to functions not belonging
to the Liouville class (see [36, p. 237]). For example, let g and h be measurable functions on R

such that D %g exists and h = D{%g a.e. Then we set D¢h = g.

It is known that Dj‘fﬁ = Di(Di) for any «, 8 € R, where DY = Id denotes the identity
operator and (—1)"D% = D™ = 47 holds with n € N. See [36].

In what follows, we refer to the Caputo left-sided fractional derivative, D® f, as the Caputo

fractional derivative of order o« > 0 of f and we write D*f := D2 f. For example, for the
M

F(s)ds,

we have

D=M = \7eM  and  D%M = \%M,  Rel > 0.

function e

For a > 0, we define W*P(R; X) as the Banach space consisting of all u € LP(R; X), for
which there exists v/, u”,...,u"™ € LP(R; X ), n = [a], such that
/ u(t)D*p(t)dt = / D%u(t)p(t)dt
R R
for all ¢ € D(R).
Thus, if u € LP(R;[D(A)]) is a weak solution of equation (1.1), i.e.

/ w(t) DO (t)dt = / (Au(t)+Fug + F(2))dt
R R
for all € D(R), then u € W*P(R; X) and D% = Au+Fu. + f.

We denote by f the Fourier transform of f, that is

f(s) = /R (1),

for s € R and f € LY(R; X).

We denote by D(R; X) the space of X-valued C*°—functions with compact support on R.
S'(R; X) = B(S(R); X) is the space of all tempered distributions. Then the Fourier transform
F on §'(R; X) is defined by

(Fu, ¢) = (u, ),
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where u € §'(R, X) and ¢ € S(R). If we identify S(R; X) with a subspace of §'(R; X) by letting

(u, ) = /[R u(t)d(t)dt, 6 < S(R),

for all u € S(R; X), then @ = Fu, i.e.,

[ utwia = [ asosas,

R

for all u € S(R; X), ¢ € S(R). Thus F : S'(R; X) — S’(R; X) is an isomorphism extending the
isomorphism u — 4 on S(R; X'). We refer to [1] for all these properties.

For f € L: (R; X) of subexponential growth, that is

loc

[e.@]
/ e~ f(t)||dt < oo,  for each € > 0,
—0o0

we denote by f(\) for the Carleman transform of f :

Joo e Mf(t)dt, Rel >0,
f) =
— [° e Mf(t)dt, Red<O0.

Definition 2.1. Let X,Y be Banach spaces, 1 < p < co. A function M € C*(R;B(X,Y)) is
an L§(7Y—multiplier if there exists a bounded operator T' : LP(R; X) — LP(R;Y") such that for

all f € F7I1D(R; X)
TfeSR;Y), and (Tf) (s)=M(s)f(s), seR.

Definition 2.2. A family of operators T C B(X,Y) is called R-bounded if there is a constant
C > 0 such that for allTy,...., T, €T, x1,....,2n € X, n € N,

1 n 1 n
(2.3) / E Tj(t)le‘j dt S C/ E Tj(t).%‘j dt,
0 - 0 -
J=1 v J=1

X

where (r;) is a sequence of independent symmetric {—1,1}-valued random variables on [0,1],
e.g. the Rademacher functions r;(t) = sgn(sin(2/7t)). The smallest such C is called R-bound of
T and we denote it by Ry(T).

We note that in a Hilbert space every normbounded set T is R-bounded. Several properties
of R-bounded families can be found in the monograph of Denk, Hieber and Priiss [20]. See
moreover [26].

The following operator-valued multiplier theorem is due to Weis [42, Theorem 3.4].

Theorem 2.3. Let X,Y be UM D-spaces and 1 < p < oco. Suppose that M € C1(R; B(X,Y)),
and that the sets
{M(s):s€R} and {sM'(s):s€R},

are R-bounded. Then M is an L%  —multiplier.
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3. THE MAXIMAL LP-REGULARITY. THE UMD CASE.
Let A: D(A) C X — X be a linear closed operator on the Banach spaces X. We consider the
following fractional differential equation
(3.1) D%(t) = Au(t)+Fus + f(t), teR,
where @ > 1, and f € LP(R; X) and for r > 0, F' : LP([—r,0]; X) — X is a linear and bounded

operator. Moreover u; is an element of LP([—r,0]; X) which is defined as u:(0) = u(t + 6) for
—r<60<0.

Definition 3.1. Let 1 < p < oo. For f € LP(R; X), we call u € LP(R; X) a solution of equation
(5.1) if u e W*P(R; X) N LP(R; [D(A)]) and u satisfies equation (3.1) for a.e. t € R.
Definition 3.2. We say that the equation (3.1) has mazimal LP-regularity if for each f €
LP(R; X)) there exists a unique solution u of equation (3.1).

Remark 3.3.

Observe that if equation (3.1) has maximal LP-regularity, it follows from the closed graph
theorem that the map M : LP(R; X)) — W*P(R; X) N LP(R; [D(A)]), which associates to f the
unique solution u of equation (3.1) is linear and continuous.

Indeed, since A is a closed operator, we have that the space H := W*P(R; X )N LP(R; [D(A)])
endowed with the norm
lullz o= 1D%u|ze + || Aullze + [[ull e
is a Banach space.
For appropriate functions, the Caputo left and right-sided fractional derivatives are adjoint
in the sense of the following lemma.

Lemma 3.4. If D*f and D “g exist, then

[ #atwa = [ D soD (0
Proof. The proof is similar to [25, p. 89]. [

Denote by ey(t) := ¢! for all A € R, and define the operators {Fj}xer C B(X) by
Fyz:=F(eyx), forallAeR and z€ X.
An easy computation shows that m(s) = Fya(s) for all s € R and u € L'(R; X).

e s

For s € R, we recall that (is)® is defined by (is)® = |s|*e 2 *8"(*) where sgn(s) denotes the
sign of s. We define the real resolvent set p(A, F') by

p(A, F) :={seR: (is)*I — Fs — A has a bounded inverse }.
The real spectrum set o(A, F') is defined by
o(A, F): =R\ p(A, F).
Proposition 3.5. Let 1 < p < oo, and f € FYR; X), and u € LP(R;[D(A)]). Assume that
(A, F) = 0. The following assertions are equivalent.

(i) u € W*P(R; X) and u is a solution of equation (3.1);
(i1) u € S(R;[D(A)]) and a(s) = ((is)*—Fs — A~ f(s) for s € R.
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Proof. (ii) = (i). Observe that 50‘\14(5) = (is)™a(s), for all s € R. In fact, since D¢ (e ") =
(is)®e~ %! for all s € R, we obtain by Lemma 3.4 that

(is)*a(s) = /R (is) ety (t)dt = /R e S D (t)dt = Douls).

Using that A is closed operator we have ;@(s) = Ad(s). Hence (D% — Fu. — Au)"(s) =
((is)® — Fs — A)u(s) = f(s), for all s € R. Consequently D — Fu. — Au = f.

(1) = (i1). Let u € LP(R; [D(A)]) NW*P(R; X) be a solution of equation (3.1). Let ¢ € S(R)
and R(A, F,s) = ((is)*—Fs — A)™, s € R. From Lemma 3.4 and Fubini’s theorem, we obtain

/(;5 R(A,F,s)f(s)ds = /gf) R(A F,s)/Re_iStf(t)dtds
= /¢(3) R(A, F, s)/eiSt[Dau(t)—Fut—Au(t)]dtds
R R
= /qﬁ(s) R(A, F, s)/u(t)Di(e_iSt)—e_iStFut—e_iStAu(t)dtds
R R
_ / 6(s) R(A, F, 5) /R ((is)°— F, — A)u(t)e—"*!dtds

= / (s / e "t dtds
= /R u(t) /R o(s)e " dsdt

- / w(®)d(t)dt.
R
Therefore, identifying LP(R; [D(A)]) with a subspace of S’(R;[D(A)]) by letting

(0, ) = /R o(t)o(t)dt,

for v € LP(R;[D(A)]) and ¢ € S(R). From the identity above, we have that a(s) = ((is)*—Fs —
A)~1f(s), forall s € R, and Fu = ((i-)*—F. —A)~1f(-) € D(R;[D(A)]). Hence u € S(R; [D(A)]).

O
Lemma 3.6. Let o, 3 > 0. If f belongs to the Liouville class, then
D (e M f(t)) = e P Z < ) —sgn(t)8)*D*Ff(1), teR,
where (3) = a(o‘_l)"‘éi(a_kﬂ).
Proof. Similar to [21, Lemma 5.3]. O

For 8 > 0 we define the following weighted LP and Sobolev spaces on R with values in the
Banach spaces X

LE(R; X) == {f : R — X measurable : ||f||g, < oo},

WP (R; X) := {f : R — X measurable : f, f',..., f" € L3(R; X)} with n = [a],
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1/p
where [|f|[gp = </R He‘ﬁt'f(t)”pdt) is the norm in L (R; X) and || fllgp + [ f'llgp + - +
| f™]|5,p is the norm in WP (R; X).

As in Definition 3.1, for f € Lj(R; X) we call u € Lj(R; X) a solution of equation (3.1) if
u € Wg’p(R;X) N Lg(R; [D(A)]) and u satisfies equation (3.1) for a.e. t € R.

Further, we define the following mapping
T LZ(R;X) — LP(R; X)
uw 4, where a(t):= e PMu(t).

The function ~ is an isomorphism between Lg(R; X) and LP(R; X).

The following lemma establishes the connection between solutions in LP(R; X) and solutions in
LA(R; X).
ﬁ 9

Lemma 3.7. Let 1 <p < oo, >0 and f € Lp(R; X). Then u € Wy (R; X)NL3(R; [D(A)])
is solution of equation (3.1) if and only if u € W*P(R; X)NLP(R; [D(A)]) is solution of

(3.2) Du(t) = Au(t)+Fu; + f(t +e_'8tlz< ) —sgn(t)8)* Dk (Plat)).

Proof. Follows directly from Lemma 3.6. O

This result includes the cases of first and second order (for F' = 0) treated in [41]. Let
[ € L(R; X). In the particular case o = 1, we have that u € Lj;(R; X) is solution of u/(t) =
Au(t) + f(t) if and only if u € LP(R; X) is solution of

a'(t) = Au(t) + f(t) — Bsgn(t) u(t).

For a = 2, it follows that u € Lg(R; X) is solution of u”(t) = Au(t) + f(¢t) if and only if
u € LP(R; X) is solution of

a(t) = Aa(t) + f(t) — B2 a(t) — 2sgn(t) @' (t).

Lemma 3.8. If the equation (3.1) has mazimal LP-regularity, then there exists 3 > 0 such that
forall f € L‘Z(R; X) there exists an unique solution u € Wg’p(R; X)QLZ(R; [D(A)]) of equation
(3.1) and the solution operator Mg : L%(R; X) — Wﬁa’p(R;X)ﬂLg(R; [D(A)]) is bounded.

Proof. Let f € Lg(R;X). From Lemma 3.7 we obtain that u € Wg’p(R;X)ﬂLg(]R; [D(A)]) is
solution of equation (3.1) if and only if u € W*P(R; X)NLP(R; [D(A)]) is solution of equation
(3.2). Define the mapping T : W*P(R; X) — W*P(R; X)NLP(R; [D(A)]) by

Tgg := M (—hy),

where M is the solution operator of equation (3.1) and

e—ﬁt|z< > —sgn(t)8)F Dk (Pl g(1)).
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From Lemma 3.6 in follows that h, € LP(R; X)), hence Tj is well-defined and is a bounded

operator. On the other hand, by (3.2) we have
D*((1+ BIp)u)(t) = D%u(t) + FD*(Tpu)(t)

u(t)+Fug + f(t) + Bha(t) + BD(Tsu)(t)
u(t)+F + f(t) + Bha(t) + BD(M(—ha))(t)
u(t)+Fug + f(t) + Bha(t) + B[AM (=ha)(t)+F(M(~ha)); — ha(t)]
a(t)+Fug + f(t) + BIAM (—=ha)(t)+F (M (~hq))]
Ala(t) + BM (—ha) )|+ Fag+BF (M(—hq)); + f(t)
A(1 + BTg)a(t)+Fug+BF (Tgu); + f

[ |
D>D>Q>D>

(=h
(t)

= AL+ BTp)a(t)+F((1 + BTp)a) + f(t)+Fug — F(a),
since F((1+ BTg)u): = F(u): + BF(Tpu);. Therefore, M(f+g) = (1 + BTs)u, where g(-) =
Fu. — F(u). € LP(R; X). If B is small enough, then (1 + 7}) is invertible. For this §, we have
that

Mg f = ()" (1 + BT5) " M(f+g),
and by the closed graph theorem the operator Mg which takes f € Lg(R;X ) into the unique
solution u € Wg™"(R; X)NL(R; [D(A)]) of equation (3.1) is a bounded operator. O

The main result in this section is the following theorem.

Theorem 3.9. Assume that X is a UM D-space and 1 < p < oo. The following assertions are
equivalent.

(i) Equation (3.1) has maximal LP-regularity;

(ii) o(A, F) =0 and {(is)*((is)*—Fs — A) "'} ser is R-bounded.

Proof. (i) = (7). Assume that equation (3.1) has maximal LP-regularity. Let s € R and suppose

(3.3) ((is)*—Fs — A)x = 0,

for 2 € D(A). Let u(t) := e*'z. Then u € W (R; X) N LE(R; [D(A)]) for all § > 0. Observe

that u is a solution to equation (3.1) with f = 0. In fact, D%u(t) = (is)*e™tx (see [36, p. 248]).

Moreover, an easy computation shows that Fu; = ¢! Fyz and therefore by (3.3) we have
Au(t) = et Az = e![(is)*— Fy]x = D%u(t) — Fuy.

Hence, choosing the number S > 0 given in Lemma 3.8, we obtain by uniqueness that v = 0,

that is, x = 0. Hence ((is)*—Fs; — A) is injective.

In order to show the surjectivity, let y € X be arbitrary. Let s € R and 8 be small enough
as in Lemma 3.8. Let f; defined by fs(t) := e'*'y. Clearly fs € Li(R; X). Let Mp : LE(R; X) —
WP (R; X) N LE(R; [D(A)]) be the bounded operator which takes each f € L(R; X) to the
unique solution u of equation (3.1).

Let u = Mgfs. For fixed r € R we have that vy (t) := u(t + ) and v2(t) := €*"u(t) are both
solutions of (3.1) with g(t) = €%" f(t). Hence, v1 = vg, that is, u(t+r) = e u(t) for all r,t € R.
Let = u(0) € D(A). If r = —t, then u(t) = "'z for all t € R. Since Du(t) = (is)o‘emx we
have D®u(0) = (is)“x and therefore,

((is)* — Fs — A)x = D“u(0) — Fug — Au(0).
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Since u(t) satisfies the equation (3.1) for all ¢ € R, we obtain,

(3.4) ((is)* — Fs — A)z = D*u(0) — Fug — Au(0) = f5(0) = y.
Therefore ((is)® — Fs — A) is surjective for all s € R. Since A is a closed operator, we have that
o(A, F) = 0.

Now, we show that {(is)¥((is)*—Fs— A)~! : s € R} is R-bounded. In fact, since the operator
solution M of equation (3.1) is bounded, we have that if f € F~1(R; X) then it follows from
Proposition 3.5 that u = M f € S(R;[D(A)]) and u(s) = ]\/47(8) = ((is)*—F, — A)~1f(s), for
all s € R. Therefore, the function N : R — B(X;[D(A)]) given by N(s) = ((is)*—Fs; — A)~! i
an L [D(A) ~Multiplier and thus {N(s) : s € R} is R-bounded (see [17, Proposition 1]). Since

A D(A) — X is an isomorphism and Fy are bounded operators for all s € R, we obtain that
{AN(s) + FsN(s) : s € R} R-bounded. The identity (is)*N(s) = I + AN(s) + FsN(s) shows
that {(is)*((is)*—Fs, — A)~! : s € R} is R-bounded.

(ii) = (i). For s € R, define the operator N(s) := ((is)*—Fs — A)~!. Observe that by
hypothesis N € C'(R; B(X, [D(A)])). We claim that {N(s) : s € R} is a L% [D(Ay ~Mmultiplier.

In fact, the hypothesis shows that {IV(s) : s € R} is R-bounded. Moreover,

isN'(s) = a(is)*N(s)N(s) — isN(s)F.N(s).
An easy computation shows that {F. : s € R} is R-bounded (see [29, Proposition 3.2]) and
as consequence, {isN'(s) : s € R} is R-bounded. By Theorem 2.3, {N(s) : s € R} is an
Lg(’[ D( A)]—multiplier. Therefore, there exits a bounded operator
T:LP(R; X) — LP(R;[D(A)])
such that for f € F7'D(R; X), u :=Tf € S(R;[D(A)]) and a(s) = ((is)*—Fs; — A)~' f(s) and
thus, by Proposition 3.5 it follows that u is a solution of equation (3.1). O bserve that,
lull ooy < NIl o r:x)-

Now, let f € LP(R; X) be an arbitrary function. Then there exist f,, € F !D(R; X) such that
fn — fin LP(R; X). Let u, = Tf,,. Then un is a solution of equation (3.1) for f,. Moreover
up, = u:=Tf in LP(R;[D(A)]). For ¢ € D(R), one has by Lemma 3.4,

/R (Aun (t)+F (un)e + fu(t))d(t)dt = / D%up(t) = /R un (t) DS (t)dt

Letting n — oo we have by Lemma 3.4 that u is a weak solution of equation (3.1) and therefore
D*u = Au+Fu. + f, that is, the equation (3.1) has maximal LP-regularity.
To see the uniqueness, suppose that

(3.5) D%u(t) = Au(t)+Fuy, teER,
with u € W*P(R; X) N LP(R; [D(A)]).

A simply computation shows that the Carleman transform of fractional derivative of u satisfies
Dou(A) = A*4( Z u® (0)A*IF for Red # 0, n = [a].

Moreover, it is easy to show that @. € LP([—r,0]); X) (see [37]) and Fu.(A) = Fga()) + Fgh,
for all ReX # 0, where g(0) = e’ and h(g) = [; e Mu(t)dt, see [30].
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Taking Carleman transform in (3.5), we have
n—1
(A= Fg—A)ya(\) = Zu(k) (0)A*"1=F £ Fgh, for ReX # 0, n = [a].
k=0

Since o(A, F) = 0, it follows that the Carleman spectrum @ of u is empty and therefore u = 0
(see [4, Theorem 4.8.2]).
O

Corollary 3.10. Let H be Hilbert space and let A : D(A) C H — H be a closed linear operator.
Then, the following assertions are equivalent for 1 < p < co.

(i) Equation (3.1) has maximal LP-regular;
(i1) o(A, F) =0 and sup ||(is)*((is)* — Fs — A) 7| < oo.

seR

Corollary 3.11. In the context of Theorem 3.9, if condition (ii) is fulfilled, we have that D®u,
Au € LP(R; X). Moreover, there exists a constant C > 0 independent of f € LP(R; X) such that
(3.6) 1 Dul| Lo x) + [ Aull o x) < Cllf e ®:x)-

The inequality (3.6) is a consequence of the closed graph theorem and known as the mazimal

regularity property for equation (3.1). We deduce that the operator L defined by:
(Lu)(t) :== DPu(t) — Au(t) — Fu;, teR,
with domain
D(L) = W*P(R; X) N LP(R; [D(A)]),
is an isomorphism onto. In fact, by Remark 3.3 we have that the space H := W*P(R; X) N
LP(R;[D(A)]) becomes a Banach space under the norm
lullzr := [[D%u|l o (s x) + | Au] Lo x) + [0l 2o x) -

We remark that such isomorphisms are crucial for the handling of nonlinear evolution equa-
tions (see [1]). Indeed, assume that X is a Banach space and A, F' satisfy the condition (i7) in
Theorem 3.9. Consider the semilinear problem

(3.7) Dou(t) = Au(t) + Fu, + f(t,u(t)), teR.

Define the Nemytskii’s operator N : H — LP(R; X) given by N(v)(t) = f(¢t,v(t)) and the
bounded linear operator

T:=L"'":IPR;X) » H
by T'(g) = u where u is the unique solution to linear problem

D%u(t) = Au(t) + Fu, + g(t).
To solve (3.7) we need to show that the operator R : H — H defined by R = T'N has a fixed
point. For more details, we refer to Amann [1, 2].

For y € X and r € R, we define f,.(t) := e"y. Is clear that f, € LY (R; X) for all 7 € R since

. 1/p
1l = ( [ pdt) Iyl =: Cs,p

lll-
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Theorem 3.12. Let A be a linear operator on a Banach space X. Assume that equation (3.1)
has mazimal LP-regularity for equation (3.1) for some p € (1,00). Then o(A, F) =0 and there
exists a constant C > 0 such that

C
i) — Fy,— A7 < ——— R.
ll((is) ) H—H‘S‘a’ s €

Proof. Let s € R and y € X. As in the proof of Theorem 3.9 we have that ((is)* — Fs — A) is
biyective and hence there is z € D(A) such that

((is)* — Fs — A)z = y.

Let 8 be small enought as in Lemma 3.8. From proof of Theorem 3.9 we have that for fs(t) :=
ey, the unique solution of equation (3.1) is us(t) := €'*'z. Moreover,

lusllg.p = Cop ll21l-
Let n = [«]. Observe that

luslisp = Capll
lusllsp = Is|Csp 2l
lulllsp = IsI*Capllzl
1l llsp = 15"Cpp 2]
By Lemma 3.8 we have
L+ I8l + I8/ + o+ s Copllzll = lusligp + luillpp + -+ ullls,

lusllwer@x)ne @b

1M fsllwer @ix)nes @)

< HMBHHszLgJ’(R;X)
= CCgpllyll-
Therefore
I((s)* — Fy — A)y|| < ¢ Iyl
T+s|+[s]2+ ... + |s|”
< %
- 14 ]s|@

4. MAXIMAL REGULARITY OF A PARTICULAR ABSTRACT EQUATION
In this section, we consider the following equation
(4.8) D%u(t) + A%u(t) = f(t), teR,

where A is a sectorial operator, 1 < a < 2, and € > 0. Maximal regularity to this class of
equations have been studied in [18, 24].
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We begin with some preliminaries on sectorial operators. We recall that a closed, densely
defined operator A is sectorial of angle 8 € (0,7) if 0(A) C Xg, and for every 5’ € (3, 7)

sup |2z — 4)71] < o,
ZE(C\EB/

where Y3 := {z € C: |argz| < B}. For a sectorial operator, define the sectorial angle w(A) by
w(A) :=1inf{p € (0,7) : A is sectorial of angle }.
For every 8 € (0,7) we write

H* (%) :={f : £3 = C holomorphic : |||« < oo},

1422
Hi*(Xg) = {f € H*(Xg) : 3¢ > 0 such that sup |f(2)] ‘ —;Z < oo} .
ZGEB
If A is a sectorial operator of angle 8 € (0, 7), then
1 _
() = f(A) 1= 5= [ )z - A)
T Jo% g

defines a functional calculus from H§®(3g ) into B(X) for every 5’ > (. This functional calculus
may be extended in a natural way in order to define the fractional powers A for every ¢ > 0,
see [22, 34].

A sectorial operator A admits a bounded H* functional calculus of angle p € [w(A), ) if the
functional calculus on H{®(¥g/) extends to a bounded linear operator on H>(Xg ) for every
B" € (B, 7). The infimum of all such § is denoted by wg(A).

The well-known examples for general classes of closed linear operator with a bounded H*°
calculus are

(1) normal sectorial operators in a Hilbert space;

(2) m-accreative operators in a Hilbert space;

(3) generators of bounded Cy-groups on L-spaces;

(4) negative generators of positive contraction semigroups on Lj-spaces.

The class of sectorial operators A which admit a bounded H*° calculus is denoted by H>(X).
The operator A is said to admit a bounded RH -functional calculus of angle 5 € [wg(A), ) if,
in addition, for every 8 € (f’,m), the set

{F(A) <l < 1)

is R-bounded.
The main result of this section is the following.

Theorem 4.13. Let A be a sectorial operator which admits a bounded RH* functional calculus
of angle w € (O, (1 - %)) on a UMD Banach space X, where 1 < a <2 ande > 1. If 0 € p(A)
and 1 < p < oo, then (4.8) has mazimal LP-regularity.

Proof. Follow the same lines of [24, Theorem 4.6]. Since w € (0,Z(1 — §)), there exists 3 > 0
such that 8 < Z(1 — §). For each z € ¥3 and s € R, define N(is, z) := (is)*((is)™ + 25) .

Note that (z’iia belongs to the sector E%JF&, where 5* + e < m. Hence the distance from the
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sector Z%+55, to —1 is always positive. Therefore, there exists a constant M > 0 independent
of s € R and z € ¥, such that

1

’Za <M.
I+ 6o

[N (is, 2)| =

Since A admits a RH functional calculus of angle w, we conclude by [20, Proposition 4.10] that
the set {N(is, A) : s € R\ {0}} is R-bounded. Since A invertible, the operators ((is)® + A%)~*
exist for all s € R. Therefore, {N(is, A) : s € R} is R-bounded. We conclude by Theorem 3.9,
that the equation (4.8) has maximal LP-regularity. O

We recall that a linear operator A defined on X is called non-negative if (—o0,0) € p(A) and
there exists M > 0 such that

[MA—=A) 7Y <M, forall X<O0,

and A is said to be positive if it is non-negative and if, in addition, 0 € p(A). See [34] for more
details.

Since each self-adjoint, positive operator admits a bounded RH* calculus of angle 0, we
obtain the following Corollary.

Corollary 4.14. Let A be a selfadjoint, positive operator defined on a Hilbert space H, 1 < a < 2
and € > 1. Then for every f € LP(R; H) there exists a unique v € LP(R;[D(A)]) N W*P(R; H)
such that (4.8) holds for all t € R.

Since A := —A with domain D(A) := {f € L?(R;C) : 227]; € L*(R;C)} is a self-adjoint and
positive operator, we have the following result.

Corollary 4.15. Let 1 < a < 2 and € > 1. Then for every f € LP(R; L?>(R;C)) there exists a
unique u € LP(R; [D(A)]) N W*P(R; L?(R; C)) such

D%u(t) + (=A) u(t) = f(t),
holds for all t € R.

5. EXAMPLES

We conclude the paper, with an application of the previous results. Let n : [—h,0] — B(X)
be a strongly continuous function. Let F': LP([—h,0]; X) — X be the bounded linear operator
given by

0
F(g) = / O)6(6)d8.6 € 1([-1,01.X).

We notice that an important special case consists of those operators F' defined by
n
F(d)) = Z Ck¢(7k)7 Cb € Lp([—T, O]a X)a
k=0

where Cy, € B(X) and 7, € [—7,0] for k = 0, ..., n. For concrete equations dealing with the above
classes of delay operators see the monograph of Batkai and Piazzera [5, Chapter 3].
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Consider the following problem with delay

82 0
Dot ) = S ult, ) + / g(O)ult +0,2)d0 + f(t,2), (tx)€ R x [0,7],
€z -1

u(t,0) =u(t,7) =0, teR,

(5.9)

where 1 < a < 2, g: [-1,0] — R is a continuous function and r = 1. We assume that the map
defined by R >t — f(-,t) € X := L?([0,7]) belongs to LP(R, X). On X define the operator A
by
d2
Av = Ev(m), with domain  D(A) := {v € X : v € H*([0,]),v(0) = v(r)}.

The delay operator F' is defined by

0
F(o) = [ a@)0(0)8, o€ (=0} X).
With these notations, the problem (5.9) adopts the abstract form of equation (3.1).

It is well known that A is the infinitesimal generator of an analytic semigroup, that A has
discrete spectrum with eigenvalues of the form —n? n € N, and the corresponding normalized
eigenfunctions are given by z,(&) := (%)% sin(ng). In addition, {z, : n € N} is an orthonormal
basis for X, and thus

Ax = Z —n%(x, 2p) 2,
n=1
for all x € D(A). Therefore
- 1
((is)* — A) o = r; W(m,%)%, for all x € X.

We notice that if 1 < a < 2, then Re((is)*) < 0, and therefore,
(i5)* +n?| > [Im((is)")| = |s|*sin (Fa), (s #0),

and thus,
1

i) — AN —
i5)° = ) < [

. (s#0).
Observe that,
I < llglloc = € < 0.
Since the identity
(is)*((is)* = Fs — A)™h = (I = ((is)* — A) 7' Fy) ' (is)* (i)™ — A) ",
is valid for all s € R we have

C
[(is)*((is)* — Fs — A) || < 0o, when ——~ < land1<a<2.
sin (Ja)
By Theorem 3.9, we conclude that the problem (5.9) has maximal LP-regularity (1 < p < oc0).
Moreover, the solution u of (5.9) satisfies D%u Pu ¢ LP(R; L2([0,7])).

) Ox2
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