
DISCRETIZATION OF C0-SEMIGROUPS AND DISCRETE SEMIGROUPS OF1

OPERATORS IN BANACH SPACES.2
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Abstract. In this paper we introduce the notion of a τ -discrete semigroup {Tn
τ }n∈N0

generated by a
closed linear operator A in a Banach space X. We show that {Tn

τ }n∈N0
allows us to write the solution

to an abstract discrete difference equation of first order as a discrete variation of parameters formula.
Moreover, we study the main properties of {Tn

τ }n∈N0
and its relation with the well-known notion of

discrete semigroups. Finally, we characterize uniform exponential stability of a C0-semigroup {T (t)}t≥0

in terms of the τ -discrete semigroup {Tn
τ }n∈N0

.

1. Introduction4

Let A be a closed linear operator on a Banach space X. If x0 ∈ X and A is the generator of the5

C0-semigroup {T (t)}t≥0, then it is well known that the mild solution to the equation6

(1.1) u′(t) = Au(t), t > 0,

under the initial condition u(0) = x0 is given by (see for instance [3, Proposition 3.1.16])7

(1.2) u(t) = T (t)x0, t ≥ 0.

Now, let τ > 0 be a time step-size. Since for each x ∈ X, the function L : [0,∞) → X, defined by8

L(t) := T (t)x is continuous, then a natural way to approximate the function L on an interval [0, T ] is to9

define Lnτ := L(tn), where tn := τn and 1 ≤ n ≤ N, and T := τ/N with N ∈ N being a fixed natural10

number. This means that Lnτ approximates the C0-semigroup and therefore it also approximates the11

solution u(t) at tn on the interval [0, T ], that is Lnτ ≃ T (tn)x0 = u(tn). As T (t)T (s) = T (t + s) for all12

t, s ≥ 0, then {Lnτ }n∈N0 satisfies the semigroup law Lm+n
τ = LnτL

m
τ for all m,n ∈ N.13

On the other hand, if we consider the same operator A and the abstract difference equation of first14

order15

(1.3) ∇un = Aun, n ∈ N,

under the initial condition u0 = x0, where ∇un is the backward Euler operator ∇un := un−un−1

τ , then16

(1.3) can be seen as a discretization of equation (1.1). We notice that if τ−1 ∈ ρ(A), then the solution to17

the difference equation (1.3) is given by18

(1.4) un = τ−n(τ−1 −A)−nx0,

for all n ∈ N0. As Bτ := τ−1(τ−1 − A)−1 is a bounded operator and Bmτ B
n
τ = Bm+n

τ for all m,n ∈ N0,19

then {Bmτ }m∈N0 is a discrete semigroup generated by Bτ , and the solution to (1.4) can be written as20

un = Bnτ x0. The problem of the existence of solutions to equation (1.3) for bounded operators A has21

been studied by many authors, see for instance [5, 6, 7, 17, 19], and there is an extensive literature on the22

properties of discrete semigroups generated by bounded operators, see [4, 9, 10, 11, 14, 21, 23] for further23

details. For closed linear operators and related problems, we refer to the recent papers [2, 18, 22]. But,24

is there any connection between discrete semigroups and the discretization of semigroups? To the best25

Date: August 08, 2022 and, in revised form, December 21, 2022.

2020 Mathematics Subject Classification. Primary 47D06, Secondary 39A06, 39A12, 47B39.
Key words and phrases. C0-semigroups of linear operators, discrete difference equations, unbounded linear operators.

1
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of our knowledge, there are no works connecting discretization of C0-semigroups and discrete semigroups1

generated by closed (possibly unbounded) linear operators A.2

In this paper, we introduce the notion of τ -discrete semigroups {Tnτ }n∈N0 generated by a closed linear3

operator A in a Banach space X. We study its main properties and we prove that the inhomogeneous4

problem of first order5

(1.5) ∇un = Aun + fn, n ∈ N,

under the initial condition u0 = x0 ∈ X, where (fn)n is a given bounded sequence, can be written as
a variation of parameters formula, similarly to the continuous case. Moreover, we prove that {Tnτ }n∈N0

is, in fact, a discrete semigroup generated by Bτ and we find a subordination relation between the C0-
semigroup and a τ -discrete semigroup generated by the same operator A. More precisely, we show that
if A generates the C0-semigroup {T (t)}t≥0, then

T (t)x = lim
τ→0+

τ

∞∑
n=1

qτn(t)T
n
τ x, t ≥ 0.

for all x ∈ X, where {Tnτ }n∈N0
is the τ -discrete semigroup defined by

T 0
τ x := x, Tnτ x :=

∫ ∞

0

qτn(t)T (t)xdt, n ∈ N,

and qτn(t) := e−t/τ (t/τ)n−1

(n−1)!τ , n ∈ N. As a consequence, we give a characterization of uniform exponential6

stability of {T (t)}t≥0 in terms of {Tnτ }n∈N0
.7

The paper is organized as follows. In Section 2 we give the preliminaries. In Section 3 we introduce the8

τ -discrete semigroups {Tnτ }n∈N0
and we study its main properties. In Section 4, we study a connection9

between {T (t)}t≥0 and {Tnτ }n∈N0 . Moreover, we study the existence and uniqueness of solution to the10

difference equation of first order (1.5), and we given necessary and sufficient conditions on {Tnτ }n∈N0 to11

obtain uniform exponential stability of {T (t)}t≥0. Finally, in Section 5 we give some examples.12

2. Preliminaries13

We denote the set of non-negative integer numbers by N0. For a fixed τ > 0 and n ∈ N, we define the
positive functions qτn by

qτn(t) := e−
t
τ

(
t

τ

)n−1
1

τ(n− 1)!
.

Let u : R+
0 → X be a bounded and locally integrable function. Let us define the sequence (un)n as14

(2.6) un :=

∫ ∞

0

qτn(t)u(t)dt, n ∈ N.

For τ > 0 small enough, we notice that the function t 7→ qτn(t) behaves like a delta function at tn := nτ,15

and therefore, un approximates u(tn).16

For a given Banach space X, s(N0, X) denotes the vectorial space consisting of all vector-valued
sequences v : N0 → X. The backward Euler operator ∇τ : s(N0, X) → s(N0, X) is defined by

∇τv
n :=

vn − vn−1

τ
, n ∈ N.

For a given α > 0, we define the following sequence17

(2.7) kατ (n) =
τα−1Γ(α+ n)

Γ(α)Γ(n+ 1)
, n ∈ N0.
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In particular, we notice that k1τ (n) = 1 for all n ∈ N0. Moreover, as in [22, Corollary 2.9] (see also [1,1

Proposition 3.1]) we have the following convolution property: If α, β > 0, then2

(2.8) kα+βτ (n) = τ

n∑
j=0

kατ (n− j)kβτ (j).

For a given discrete sequence of operators {Sn}n∈N0
⊂ B(X) and a scalar sequence c = (cn)n∈N0

, we
define the discrete convolution c ⋆ S as

(c ⋆ S)n :=

n∑
k=0

cn−kSk, n ∈ N0.

In particular, if g1(t) := 1 for all t ≥ 0, then as in [22, Corollary 2.9] we have:3

(2.9)

∫ ∞

0

qτn(t)(g1 ∗ S)(t)xdt = τ

n∑
j=1

k1τ (n− j)Sjx = τ

n∑
j=1

Sjx, x ∈ X,n ∈ N,

where {S(t)}t≥0 ⊂ B(X) is a Laplace transformable family of linear operators, the ∗ denotes the usual4

continuous convolution, that is, (g ∗ S)(t) :=
∫ t
0
g(t− r)S(r)dr, and Sj :=

∫∞
0
qτj (t)S(t)dt.5

The Z-transform of a sequence s ∈ s(N0, X) at z ∈ C, is defined by s̃(z) :=
∑∞
j=0 z

−jsj , where6

sj := s(j), and the convergence of this series holds for |z| > R, for R large enough. It is a well known fact7

that if s1, s2 ∈ s(N0, X) and s̃1(z) = s̃2(z) for all |z| > R for some R > 0, then sj1 = sj2 for all j = 0, 1, ....8

Moreover, the Z-transform is a linear operator on s(N0, X) and satisfies the finite discrete convolution9

property10

(2.10) s̃1 ⋆ s2(z) = s̃1(z)s̃2(z), s1, s2 ∈ s(N0, X).

We say that an operator A : D(A) ⊂ X → X is said to be sectorial of angle θ if there exist M > 0
and θ ∈ (π/2, π) such that ρ(A) ⊃ Σθ := {z ∈ C : | arg(z)| < θ} and

∥(z −A)−1∥ ≤ M

|z|
for all z ∈ Σθ.

In this case, we write A ∈ Sect(θ,M). For further details on sectorial operators, see for instance [12].11

For a given linear and closed operator A whose resolvent set contains the negative half-line (−∞, 0],12

(for example, if A is a sectorial operator) and 0 ≤ ε ≤ 1, Xε denotes the domain of the fractional power13

Aε, that is Xε := D(Aε) endowed with the graph norm ∥x∥ε = ∥Aεx∥. Hence, X1 corresponds to the14

domain of A, and X0 to the space X. It is a well known fact that if 0 < ε < 1, and x ∈ D(A), then there15

exists a constant K ≡ Kε > 0 such that (see [20])16

∥Aεx∥ ≤ K∥Ax∥ε∥x∥1−ε.(2.11)

Definition 2.1. A family of linear operators {S(t)}t≥0 ⊂ B(X) is said to be exponentially bounded, if17

there exist constants M,ω ∈ R such that ∥S(t)∥ ≤Meωt, for all t ≥ 0.18

Proposition 2.2. Let {S(t)}t≥0 ⊂ B(X) be a family of exponentially bounded linear operators with
∥S(t)∥ ≤Meωt, where M > 0 and ω < 1

τ . Let x ∈ X. If we define the sequence {Snx}n∈N0
by

S0x := x and Snx :=

∫ ∞

0

qτn(t)S(t)xdt, n ∈ N,

then

S̃(z)x =
1

τz
Ŝ

(
1

τ

(
1− 1

z

))
x+ x,

for all |z| > 1 and x ∈ X.19
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Proof. The hypothesis implies that ∥Snx∥ ≤M
∫∞
0
qτn(t)e

ωt∥x∥dt = M
(1−ωτ)n ∥x∥ for all n ∈ N. Therefore,1

the Z-transform of S exists for all |z| > 1. On the other hand, the hypothesis implies that the Laplace2

transform of S exists for all Re(λ) > 0. Thus3

S̃(z)x =

∞∑
n=0

z−nSnx =

∫ ∞

0

e−
t
τ

∞∑
n=1

z−n
(
t

τ

)n−1
1

τ(n− 1)!
S(t)xdt+ x

=
1

τz

∫ ∞

0

e−
t
τ (1−

1
z )S(t)xdt+ x

=
1

τz
Ŝ

(
1

τ

(
1− 1

z

))
x+ x.

�4

3. τ-Discrete semigroups in Banach spaces5

In this Section we introduce the notion of τ -discrete semigroup generated by a closed linear operator6

A in a Banach space and we study its main properties.7

Definition 3.3. Let A be a closed linear operator defined on a Banach space X. An operator-valued8

sequence {Tnτ }n∈N0
⊂ B(X) is called a τ -discrete semigroup generated by A if it satisfies the following9

conditions10

(1) T 0
τ = I.11

(2) Tnτ ∈ D(A) for all x ∈ X and ATnτ x = Tnτ Ax for all x ∈ D(A), and n ∈ N0.12

(3) For each x ∈ X and n ∈ N,13

(3.12) Tnτ x = x+ τA

n∑
j=1

T jτ x.

Moreover, we define the resolvent operator Rτ : X → D(A) by

Rτ := τ−1
(
τ−1 −A

)−1
.

Proposition 3.4. Let {Tnτ }n∈N0
⊂ B(X) be a τ -discrete semigroup generated by A. Then,14

(1) τ−1 ∈ ρ(A), and15

(2) Tnτ = Rnτ for all n ∈ N0.16

Proof. To prove (1), we notice that by (3.12), we get T 1
τ x = x+ τAT 1

τ x for all x ∈ X, which implies that
(τ−1 −A)T 1

τ x = τ−1x. Since A and Tnτ commute, we obtain

T 1
τ

(
τ−1 −A

)
x = τ−1T 1

τ x− T 1
τAx =

(
τ−1 −A

)
T 1
τ x = τ−1x,

for all x ∈ X. As A is a closed linear operator, we obtain that τ−1 ∈ ρ(A) and for each x ∈ X,

T 1
τ x = τ−1

(
τ−1 −A

)−1
x. Moreover, this last equality proves (2) for n = 1. If we assume (2) for n, then,

by definition, we get

Tn+1
τ x = x+ τA

n∑
j=1

T jτ x+ τATn+1
τ x,

which implies that

τ(τ−1 −A)Tn+1
τ x = x+A

n∑
j=1

T jτ x = Tnτ x = Rnτ x,

and hence Tn+1
τ x = τ−1(τ−1 −A)−1Rnτ x = Rn+1

τ x for all x ∈ X. �17

Corollary 3.5. If {Tnτ }n∈N0
is a τ -discrete semigroup generated by A, then Tn+mτ = Tnτ T

m
τ = Tmτ T

n
τ for18

all m,n ∈ N0.19
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Proof. In fact, by Proposition 3.4, Tm+n
τ x = Rm+n

τ x = Rmτ R
n
τ x = Tmτ T

n
τ x and Tmτ T

n
τ x = Tnτ T

m
τ x for all1

m,n ∈ N0 and x ∈ X. �2

We notice that A is the generator of a τ -discrete semigroup {Tnτ }n∈N0 in the sense of Definition 3.3 if
and only if Tnτ T

m
τ x = Tn+mτ x for all m,n ∈ N0 and x ∈ X. In fact, if {Tnτ }n∈N0

is a τ -discrete semigroup
generated by A, then m∑

j=1

T jτ

Tnτ x =

m∑
j=1

T jτ x+

τA m∑
j=1

T jτ

 m∑
j=1

T jτ x

 =

m∑
j=1

T jτ x+ Tmτ

n∑
j=1

T jτ x−
n∑
j=1

T jτ x,

that is,  m∑
j=1

T jτ

Tnτ x− Tmτ

 n∑
j=1

T jτ x

 =

m∑
j=1

T jτ x−
n∑
j=1

T jτ x,

for all x ∈ X. As T 0
τ = I, we can write the last equality as m∑
j=0

T jτ

Tnτ x− Tnτ x− Tmτ

 n∑
j=0

T jτ x

+ Tmτ x =

m∑
j=0

T jτ x−
n∑
j=0

T jτ x.

By [4, Example 1.2.1], taking Z-transform (in m) we get

z

z − 1
T̃τ (z)T

n
τ x− z

z − 1
Tnτ x− T̃τ (z)

 n∑
j=0

T jτ x

+ T̃τ (z)x =
z

z − 1
T̃τ (z)x− z

z − 1

n∑
j=0

T jτ x,

and, next, taking Z-transform (in n) we obtain3

z

z − 1
T̃τ (z)T̃τ (w)x− z

z − 1
T̃τ (w)x− w

w − 1
T̃τ (z)T̃τ (w)x+

w

w − 1
T̃τ (z)x =

z

z − 1

w

w − 1
T̃τ (z)x

− z

z − 1

w

w − 1
T̃τ (w)x,

which is equivalent to
(w − z)T̃τ (z)T̃τ (w)x = wT̃τ (z)x− zT̃τ (w)x,

for all x ∈ X. On the other hand, if we assume Tn+mτ x = Tnτ T
m
τ x for all m,n ∈ N0 and x ∈ X, then

taking Z-transform in n we have
∞∑
j=0

z−jT j+mτ x = T̃τ (z)T
m
τ x.

On the other hand, we notice that

∞∑
j=0

z−jT j+mτ x = zmT̃τ (z)x−
m−1∑
r=0

T rτ z
m−rx = zmT̃τ (z)x−

m∑
r=0

T rτ z
m−rx+ Tmτ x,

and taking Z-transform in m, we get by [4, Example 1.2.1]
w

w − z
T̃τ (z)x− w

w − z
T̃τ (w)x+ T̃τ (w)x = T̃τ (z)T̃τ (w)x,

that is,
wT̃τ (z)x− zT̃τ (w)x = (w − z)T̃τ (z)T̃τ (w)x.

Therefore, we obtain that A is the generator of a τ -discrete semigroup {Tnτ }n∈N0 according to Definition4

3.3 if and only if Tnτ T
m
τ x = Tn+mτ x for all m,n ∈ N0 and x ∈ X.5

The next result shows that there exists a unique τ -discrete semigroup generated by an operator A.6

Proposition 3.6. Assume that {Tnτ }n∈N0
and {Qnτ }n∈N0

are τ -discrete semigroups generated by A. Then7

Tnτ = Qnτ for all n ∈ N0.8
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Proof. Let x ∈ X. Define h(n) := Tnτ x−Qnτ x, n ∈ N0. Then, T
0
τ x = Q0

τx = I, and by Proposition 3.4 we
have T 1

τ x = Q1
τx = Rτ , and thus h(0) = h(1) = 0. Now, by Definition 3.3, we have

h(n) = τA

n∑
j=1

h(j), n ≥ 2,

which implies that (I − τA)h(n) = τA
∑n−1
j=1 h(j). As τ−1 ∈ ρ(A) (by Proposition 3.4), we get h(n) = 01

for all n ≥ 2. Therefore Tnτ x = Qnτ x for all n ∈ N0 and x ∈ X. �2

Proposition 3.7. Let {Tnτ }n∈N0
⊂ B(X) be a τ -discrete semigroup generated by A. Then, its Z-transform3

satisfies4

(3.13) T̃τ (z)x =
1

τ
(I − τA)

((
z − 1

τz

)
−A

)−1

x, for all x ∈ X.

Proof. By Proposition 3.4, Tnτ = Rnτ for all n ∈ N0. Since Rτ = τ−1(τ−1 − A)−1 is a bounded operator,
we get (by [16, Table 18.4]) for all x ∈ X and |z| > ∥Rτ∥ that

T̃τ (z)x =

∞∑
n=0

z−nTnτ x =

∞∑
n=0

z−nRnτ x = z(z − τ−1(τ−1 −A)−1)−1x =
1

τ
(I − τA)

((
z − 1

τz

)
−A

)−1

x.

�5

Proposition 3.8. Let τ > 0. If A is a bounded operator with τ∥A∥ < 1, then A generates the τ -discrete6

semigroup {Tnτ }n∈N0
defined by7

(3.14) T 0
τ := I, and for n ≥ 1, Tnτ :=

∞∑
j=0

τ j
Γ(j + n)

Γ(j + 1)Γ(n)
Aj =

∞∑
j=0

τ j
(
j + n− 1

j

)
Aj .

Proof. Let x ∈ X and n ∈ N. We first notice that

τ j
Γ(j + n)

Γ(j + 1)Γ(n)
= kj+1

τ (n− 1), n ∈ N.

Since the series in (3.14) converges for τ∥A∥ < 1 (see [16, Formula 8.328]) we get by (2.8) that

τA

n∑
j=1

T jτ x =

∞∑
l=0

Al+1τ

n∑
j=1

kl+1
τ (j − 1)x =

∞∑
l=0

Al+1τ

n−1∑
m=0

kl+1
τ (m)x =

∞∑
l=0

Al+1kl+2
τ (n− 1)x.

As k1τ (m) = 1 for all m ∈ N, we get

τA

n∑
j=1

T jτ x =

∞∑
j=0

kj+1
τ (n− 1)Ajx− k1τ (n− 1)x =

∞∑
j=0

kj+1
τ (n− 1)Ajx− x = Tnτ x− x.

�8

Next, we recall that for a given bounded operator L ∈ B(X), the sequence L : N0 → B(X) given by9

L(n) := Ln defines a time-discrete semigroup generated by L− I, which satisfies L(n+m) = L(n)L(m)10

for all n,m ∈ N0 and L(0) = I, see [4] for more details. Sometimes the operator L is also called the11

generator of the discrete semigroup {L(n)}n∈N0 , see for instance [14].12

The next result relates τ -discrete semigroups and discrete semigroups in a Banach space.13

Proposition 3.9. Let τ > 0. Let {Tnτ }n∈N0
be a τ -discrete semigroup generated by a closed linear operator14

A. Then, {Tnτ }n∈N0
is a discrete semigroup generated by L := τ−1(τ−1 −A)−1 = Rτ .15
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Proof. We need to prove that LmLn = Lm+n for all n,m ∈ N0. In fact, by Proposition 3.4, Lm = Tmτ1

and Lm+n = Tm+n
τ , and by Corollary 3.5 we get LmLn = Tmτ T

n
τ = Tm+n

τ = Lm+n. Moreover, clearly2

L0 = I.3

�4

Remark 3.10. We notice that if L ∈ B(X) is an invertible operator and A := 1
τ (I − L−1), then the5

semigroup T (t) := etA satisfies Ln =
∫∞
0
qτn(t)T (t)dt for all n ∈ N, where Ln is the n-power of L.6

4. C0-semigroups and τ-discrete semigroups7

In this section we study the relation of C0-semigroups and τ -discrete semigroups generated by a closed8

linear operator A.9

Proposition 4.11. Let A be the generator of a C0-semigroup {T (t)}t≥0. Then, A generates a τ -discrete10

semigroup {Tnτ }n∈N0
⊂ B(X).11

Proof. Since A generates a C0-semigroup {T (t)}t≥0, then (see [3, Proposition 3.1.9])12

(4.15) T (t)x = x+A

∫ t

0

T (s)xds = x+A(g1 ∗ T )(t)x, x ∈ X, t ≥ 0,

where g1(t) := 1, for all t ≥ 0. For each x ∈ X, we define Tnτ x, n ∈ N0, by T 0
τ x := x and Tnτ x :=∫∞

0
qτn(t)T (t)xdt, for n ∈ N. Multiplying (4.15) by qτn(t) and integrating over [0,∞) we conclude by (2.9)

that

Tnτ x = x+A

∫ ∞

0

qτn(t)(g1 ∗ T )(t)xdt = x+ τA

n∑
j=1

T jτ x.

Finally, as T (t)Ax = AT (t)x for all x ∈ D(A), (see [3, Proposition 3.1.9]) multiplying this equality by13

qτn(t) and integrating over [0,∞), we get Tnτ Ax = ATnτ x for all n ∈ N0 and x ∈ D(A). �14

From the theory of C0-semigroups, it is well known that, if A is the generator of C0-semigroup in a15

Banach space X, x0 ∈ X, and f : [0,∞) → X belongs to L1([0,∞), X), then the mild solution to the16

abstract Cauchy problem17 {
u′(t) = Au(t) + f(t), t > 0
u(0) = x0,

(4.16)

is given by the variation of parameters formula

u(t) = T (t)x0 +

∫ t

0

T (t− s)f(s)ds, t ≥ 0,

see for instance [3, Proposition 3.1.16] for further details.18

In the next result we show the existence and uniqueness of the abstract discrete difference equation of19

first order, and we show that its solution can be written as a discrete variation of parameters formula,20

similarly to the continuous case.21

Theorem 4.12. Let τ > 0. Let A be the generator of a τ -discrete semigroup {Tnτ }n∈N0
. If x0 ∈ X and22

(fn)n is a bounded vector-valued sequence, then the discrete difference equation of first order23 {
∇τu

n = Aun + fn, n ≥ 1
u0 = x0,

(4.17)

has a unique solution given by the sequence (vn)n∈N0
, where24

(4.18) vn := Tnτ x0 + τ

n∑
j=1

Tn+1−j
τ f j ,

for all n ≥ 1, and v0 := x0.25
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Proof. Since A generates the τ -discrete semigroup {Tnτ }n∈N0
, we have, by Proposition 3.4 that Tnτ = Rnτ

for all n ∈ N. As τ−1 ∈ ρ(A) (see Proposition 3.4), the equation (4.17) is equivalent to

τ(τ−1 −A)un = un−1 + τfn, n ∈ N,

that is, un = Rτu
n−1 + τRτf

n, for any n ∈ N. The initial condition implies

un = Rnτ x0 + τ

n∑
j=1

Rn+1−j
τ f j , n ∈ N,

which means that, un = Tnτ x0+τ
∑n
j=1 T

n+1−j
τ f j , for all n ∈ N. Therefore, the sequence (vn)n∈N0 defined1

by2

vn :=

{
Tnτ x0 + τ

∑n
j=1 T

n+1−j
τ f j , n ≥ 1

x0, n = 0

solves (4.17). The uniqueness follows from Proposition 3.6. �3

The next theorem gives a subordination relation between the C0-semigroup {T (t)}t≥0 and a τ -discrete4

semigroup {Tnτ }n≥0. For a related result, we refer to [13, Theorem 2] and [15].5

Theorem 4.13. Let A be the generator of a C0-semigroup {T (t)}t≥0. For each x ∈ X, define Tnτ x by

T 0
τ x := x, Tnτ x :=

∫ ∞

0

qτn(t)T (t)xdt, n ∈ N.

Then,6

(4.19) T (t) = lim
τ→0+

τ

∞∑
n=1

qτn(t)T
n
τ ,

uniformly in t in compact subsets of R+.7

Proof. We first notice that by Proposition 4.11 the sequence {Tnτ }n∈N0
is a τ -discrete semigroup generated

by A. Let x ∈ X. By the inversion theorem for the Z-transform (see [4, Chapter 1]) and Proposition 2.2
we have

Tnτ x =
1

2πi

∫
Γ

T̃ (z)zn−1xdz =
1

2πi

∫
Γ

[
1

τ
T̂

(
1

τ

(
1− 1

z

))
+ I

]
zn−1xdz,

where Γ is a simple closed contour containing the origin that encloses all the poles of T̃ (z)zn−1. We

recall here that T̃ (z) denotes the Z-transform of the sequence {Tnτ }n∈N0 at z, and T̂ denotes the Laplace
transform of t 7→ T (t). Now, we introduce the change of variable λ = 1

τ

(
1− 1

z

)
. Then,

Tnτ x =
1

2πi

∫
Γ̃

1

(1− τλ)n
T̂ (λ)xdλ+

1

2πi

∫
Γ̃

zn−1xdλ,

where Γ̃ is the resulting path under this change of variable. Multiplying the last identity by qτn(t) and
summing up in n ∈ N, we get

τ

∞∑
n=1

qτn(t)T
n
τ x =

1

2πi

∫
Γ̃

τ

( ∞∑
n=1

1

(1− τλ)n
qτn(t)

)
T̂ (λ)xdλ+

1

2πi

∫
Γ

τ

∞∑
n=1

zn−1qτn(t)xdλ,

Now, we notice that τ
∑∞
n=1 z

n−1qτn(t) = e−
t
τ

∑∞
n=1

( zt
τ )

n−1

(n−1)! = e−
t
τ (1−z), and limτ→0+ τ

∑∞
n=1 z

n−1qτn(t) =8

0. For Eτ (t) := τ
(∑∞

n=1
1

(1−τλ)n q
τ
n(t)

)
where t ≥ 0, it is easy to see that9

(4.20) lim
τ→0+

Eτ (t) = eλt, t ≥ 0.
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Therefore, by the inversion theorem for the Laplace transform, we obtain1

lim
τ→0+

∥∥∥∥∥T (t)x− τ

∞∑
n=1

qτn(t)T
n
τ x

∥∥∥∥∥ = lim
τ→0+

∥∥∥∥ 1

2πi

(∫
Γ̃

eλtT̂ (λ)xdλ−
∫
Γ̃

Eτ (t)T̂ (λ)xdλ−
∫
Γ

e−
t
τ (1−z)xdλ

)∥∥∥∥
≤ lim

τ→0+

1

2π

∫
Γ̃

|eλt − Eτ (t)|∥T̂ (λ)x∥|dλ|+ lim
τ→0+

1

2π

∫
Γ

|e− t
τ (1−z)|∥x∥|dλ|

= 0,

for all t ≥ 0 and x ∈ X. The proof is finished. �2

The next Corollary gives a different proof to the Yosida’s approximation theorem for C0-semigroups.3

Corollary 4.14 (Yosida’s approximation). Let A be the generator of a C0-semigroup {T (t)}t≥0 with
D(A) dense in X. Let Tnτ x defined as in Theorem 4.13. Then,

T (t)x = lim
m→∞

emtA(m−A)−1

x.

for all x ∈ X, uniformly in t in compact subsets of R+.4

Proof. By Proposition 3.4, Tnτ = Rnτ for all n ∈ N0. Since A(τ
−1 − A)−1 = Rτ − I and Rτ is bounded,5

A(τ−1 −A)−1 is bounded, and therefore, if τ = 1/m in Theorem 4.13, we obtain for x ∈ D(A) that6

T (t)x = lim
m→∞

1

m

∞∑
n=1

qτn(t)
(
m(m−A)−1

)n
x

= lim
m→∞

e−tmm(m−A)−1e
tmR 1

m x

= lim
m→∞

etmA(m−A)−1

A(m−A)−1x+ lim
m→∞

etmA(m−A)−1

x.

Since limm→∞ etmA(m−A)−1

A(m − A)−1x = 0, for all x ∈ D(A) (see for instance [12, Lemma 3.4]) and7

D(A) = X, we conclude that T (t)x = limm→∞ etmA(m−A)−1

x, for all x ∈ X. �8

We recall that a C0-semigroup {T (t)}t≥0 is called uniformly exponentially stable if there existM,ω > 09

such that ∥T (t)∥ ≤ Me−ωt for all t ≥ 0. The next result gives a characterization of uniform exponential10

stability of the C0-semigroup {T (t)}t≥0 in terms of the τ -discrete semigroup {Tnτ }n∈N0
.11

Proposition 4.15. Let A be the generator of a C0-semigroup {T (t)}t≥0. Let T
n
τ x defined as in Theorem12

4.13. Then, {T (t)}t≥0 is uniformly exponentially stable with ∥T (t)∥ ≤ Me−ωt, where ω,M > 0, if and13

only if14

(4.21) ∥Tnτ ∥ ≤ M

(1 + ωτ)n
, for all n ∈ N0, τ > 0.

Proof. If ∥T (t)∥ ≤ Me−ωt, then ∥Tnτ ∥ ≤ M
(1+ωτ)n for all n ∈ N0 as in the proof of [18, Proposition 3.7].

Conversely, assume that (4.21) holds. Let x ∈ X. By Theorem 4.13 we obtain for all x ∈ X that

∥T (t)x∥ ≤M lim
τ→0+

τ

∞∑
n=1

e−
t
τ

(
t

τ

)n−1
1

(n− 1)!τ

1

(1 + ωτ)n
∥x∥ =M lim

τ→0+

e−
tω

1+ωτ

1 + ωτ
∥x∥ =Me−ωt∥x∥.

�15

For a closed operator A ∈ Sec(θ,M), we will consider the following path Γt : For
π
2 < θ < π, we take

ϕ such that 1
2ϕ <

π
2 < ϕ < θ. Next, we define Γ ≡ Γt as the union Γ1

t ∪ Γ2
t , where

Γ1
t :=

{
1

t
eiψ : −ϕ < ψ < ϕ

}
and Γ2

t :=

{
re±iϕ :

1

t
≤ r

}
.

The next result follow from [8, Lemma 2].16
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Lemma 4.16. Let A ∈ Sec(θ,M) and Γ be the complex path defined above. If µ ≥ 0, then there exists
positive constant C, such that ∫

Γ

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤ Ctµ−1

for all t > 0, where C :=
(
2ϕ
∫ ϕ
−ϕ e

cos(ψ)dψ + 2
− cos(ϕ)

)
.1

The next theorem relates a τ -discrete semigroups and C0-semigroup at tn = τn for all n ∈ N.2

Theorem 4.17. Let 0 < ε < 1. Suppose that x ∈ D(Aε). Let A be a sectorial operator which generates3

the C0-semigroup {T (t)}t≥0. Let T
n
τ x defined as in Theorem 4.13 and Γ be the complex path defined above.4

Then, for each L > 0 there exists a constant D > 0 such that, for 0 < tn ≤ L,5

(4.22) ∥T (tn)x− Tnτ x∥ ≤ Dτtε−1
n ∥x∥ε.

Proof. Take a fixed n ∈ N such that 0 < tn ≤ L, where tn := τn. Then, we can write

T (tn)x− Tnτ x =

∫ ∞

0

qτn(t)[T (tn)− T (t)]xdt,

for all x ∈ X, and by the inversion of the Laplace transform, we get

T (tn)x− T (t)x =
1

2πi

∫
Γ

eztn − ezt

z
z(z −A)−1xdz.

As z(z −A)−1 = A(z −A)−1 + I = A1−ε(z −A)−1Aε + I, we obtain

T (tn)x− T (t)x =
1

2πi

∫
Γ

ezt − eztn

z
xdz +

1

2πi

∫
Γ

ezt − eztn

z
A1−ε(z −A)−1Aεxdz.

It is easy to see that the first integral in the last identity is equal to zero. Since A is a sectorial operator,

we have by (2.11) that ∥A1−ε(z −A)−1x∥ ≤ K(M + 1)1−ε ∥x∥|z|ε , for all x ∈ X and therefore

∥T (tn)x− T (t)x∥ ≤ K(M + 1)1−ε

2π

∫
Γ

|ezt − eztn |
|z|

∥Aεx∥
|z|ε

|dz|.

The mean value for complex-valued functions implies the existence of t0, t1 with 0 < tn < t0 < t1 < t
such that

|ezt − eztn |
|z|

≤ (t− tn)
(
|et0z|+ |et1z|

)
.

As 0 < ε < 1 and tn < t0 < t1 we have tε−1
1 < tε−1

0 < tε−1
n , and by Lemma 4.16 we get

∥T (tn)x− T (t)x∥ ≤ K(M + 1)1−εC

π
(t− tn)t

ε−1
n ∥Aεx∥.

It is easy to see that
∫∞
0
qτn(t)(t− tn)dt = τ, and therefore, we conclude that

∥T (tn)x− Tnτ x∥ ≤
∫ ∞

0

qτn(t)∥T (tn)x− T (t)x∥dt ≤ K(M + 1)1−εC

π
τtε−1
n ∥Aεx∥ = Dτtε−1

n ∥Aεx∥,

where D = KC(M+1)1−ε

π .6

�7

Corollary 4.18. Under the assumption of Theorem 4.17, we have

lim
τ→0+

∥T (tn)x− Tnτ x∥ = 0.
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5. Examples1

In this section we give examples of τ -discrete semigroups generated by closed linear operators in some2

Banach spaces.3

Example 5.19.4

On X = L2(0, π) let T (t) be defined by

T (t)(x(s)) :=

∞∑
k=0

ak(x)e
−k2t sin(ks), x ∈ X,

where ak(x) are the Fourier coefficients of x, that is, ak(x) =
√

2
π

∫ π
0
x(r) sin(kr)dr, x ∈ X. Then,5

{T (t)}t≥0 is a C0-semigroup of contractions on X whose generator is Au = u′′ with domain D(A) =6

{x ∈ X : x ∈ H2(0, π) ∩H1
0 (0, π)}. See for instance, [12, Section 2, Chapter II]. Then, for each n ∈ N,7

Tnτ (x(s)) =

∫ ∞

0

qτn(t)T (t)(x(s))dt =

∞∑
k=0

ak(x) sin(ks)

∫ ∞

0

qτn(t)e
−k2tdt =

∞∑
k=0

1

(1 + k2τ)n
ak(x) sin(ks).

Therefore,8

Tnτ (x(s)) =

√
2

π

∞∑
k=0

1

(1 + k2τ)n
sin(ks)

∫ π

0

x(r) sin(kr)dr, x ∈ L2(0, π), n ∈ N.

By Proposition 4.11, {Tnτ }n∈N0
is a τ -discrete semigroup generated by A, and by Theorem 4.12, the9

unique solution to the semidiscrete problem10

∇τu
n(s) = Aun(s) + fn(s), n ≥ 1, s ∈ (0, π),

where fn ∈ L2(0, π), under the initial condition u0 = x0(s), x0 ∈ L2(0, π) is given by vn(s) = Tnτ (x0(s))+11

τ
∑n
j=1 T

n+1−j
τ (f j(s)), n ≥ 1 and v0(s) = x0(s), s ∈ (0, π).12

Example 5.20.13

Let X be one of the spaces Lp(R) (with 1 ≤ p < ∞), C0(R) or BUC(R) := {f : R → R :
f is uniformly continuous}. For each f ∈ X, we define

(T (t)f)(s) :=
1√
4πt

∫ ∞

−∞
e

−(s−r)2

4t f(r)dr, s ∈ R.

Then, T (t) is a C0-semigroup generated by A = ∂2

∂x2 , with domain D(A) = {f ∈ X : ∂
2f
∂x2 ∈ X}, see for

instance [3, Example 3.7.6]. Now, we calculate Tn. By definition and Fubini’s theorem we have

Tnτ (f(s)) =

∫ ∞

0

qτn(t)(T (t)f)(s)dt =
1√
4π

1

τn(n− 1)!

∫ ∞

−∞

∫ ∞

0

e−
1
τ t−

(s−r)2

4
1
t t(n−

1
2 )−1dtf(r)dr, n ∈ N.

By [16, Formula 9, p. 368] we have∫ ∞

0

e−
1
τ t−

(s−r)2

4
1
t t(n−

1
2 )−1dt = 2−n+

1
2+1τ

n
2 − 1

4 |s− r|n− 1
2Kn− 1

2

(
|s− r|
τ

)
,

where Kn− 1
2
is the modified Bessel function of second kind. By [16, Formula 8.468, p. 925] we can write

Kn− 1
2

(
|s− r|
τ

)
=

√
πτ

1
2 e−

|s−r|
τ

n−1∑
k=0

(n− 1 + k)!

k!(n− 1− k)!
2−k−

1
2 |s− r|−k− 1

2 τk,

and, therefore

Tnτ (f(s)) =
1

2n−
1
2

τ
n
2 − 1

2

n−1∑
k=0

1

2k

(
n− 1 + k

k

)∫ ∞

−∞
qτn−k(|s− r|)f(r)dr, f ∈ X, s ∈ R.
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We conclude by Proposition 4.11 that {Tnτ }n∈N0
is a τ -discrete semigroup generated by A, and thus,1

Tn+mτ = Tnτ T
m
τ for all m,n ∈ N0.2
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