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Abstract. We study the approximate controllability of the discrete fractional systems of order 1 < α < 2

(∗) C∇αun = Aun + Bvn + f(n, un), n ≥ 2,

subject to the initial states u0 = x0, u1 = x1, where A is a closed linear operator defined on a Hilbert

space X, B is a bounded linear operator from a Hilbert space U into X, f : N0 × X → X is a given
sequence and C∇αun is an approximation of the Caputo fractional derivative ∂α

t of u at tn := τn, where

τ > 0 is a given step size.

To do this, we first study resolvent sequences {Sn
α,β}n∈N0

generated by closed linear operators to obtain

some subordination results. In addition, we discuss the existence of solutions to (∗) and next, we study

the existence of optimal controls to obtain the approximate controllability of the discrete fractional system
(∗) in terms of the resolvent sequence {Sn

α,β}n∈N0
for some α, β > 0. Finally, we provide an example of a

discrete fractional system to illustrate our results.

1. Introduction

Let 1 < α < 2. In recent years there has been increasing interest in the study of the controllability of
discrete fractional systems in the form

(1.1) ∂α
t u = Au+Bv + F, t > 0,

subject to the initial conditions u(0) = x0, u
′(0) = x1, where ∂α

t denotes a fractional derivative (typically,
in the sense of Caputo or Riemann-Liouville), A : D(A) ⊂ X → X is closed linear operator defined in a
Hilbert or Banach space X, B : U ⊂ X → X is a bounded linear operator, v denotes the control of the
system, F is a given linear or nonlinear function and x0, x1 ∈ X.

We observe that if α → 1, then ∂α
t u corresponds to u′ and the system (1.1) is transformed into the

first-order problem

(1.2) u′(t) = Au(t) +Bv(t) + F (t), t > 0, u(0) = x0.

In this case, the C0-semigroup {T (t)}t≥0 generated by A turns out to be a great tool for the study of the
controllability of abstract systems in the form of (1.2) ([41, Chapter 11]), because the mild solution to
(1.2) can be written in terms of {T (t)}t≥0 as

u(t) = T (t)x0 +

∫ t

0

T (t− s)[Bv(s) + F (s)]ds,

see for instance the monograph [41] for a detailed discussion on the controllability of this type of problems
from different perspectives and tools.

Now, if α → 2, then ∂α
t u is precisely the second derivative of u and the system (1.1) becomes

(1.3) u′′(t) = Au(t) +Bv(t) + F (t), t > 0, u(0) = x0, u
′(0) = x1.
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To study the approximate controllability of this second-order problem, a useful approach is the theory of
cosine families generated by A ([40]). In this case, if A is the generator of the cosine familiy {C(t)}t∈R,
then the mild solution to (1.3) is given by

u(t) = C(t)x0 + S(t)x1 +

∫ t

0

S(t− s)[Bv(s) + F (s)]ds,

where S(t) :=
∫ t

0
C(s)ds is the corresponding sine family. The recent literature on the approximate

controllability of second-order in infinite dimensional spaces is extensive. Just to mention a few: in the
paper [21] the authors study approximate controllability of second-order implicit functional systems; the
authors in [30] use the theory of cosine families to study the approximate controllability of stochastic
systems of second order, and in [31] is studied the approximate controllability of differential inclusions via
cosine families of operators.

More recently, the study of controllability of fractional system in the form of (1.1) has been widely
studied. For 0 < α < 1, the authors in the paper [34] study the exact and approximate controllability of
(1.1) in Banach spaces. In [38] is studied the approximate controllability of semilinear fractional differential
systems. In these papers, the main hypothesis is that operator A generates a fractional resolvent of

operators, that is, a family {Sα,1(t)}t≥0 of linear operators in X whose Laplace transform verifies Ŝα,1(λ) =
λα−1(λα −A)−1 for all λα ∈ ρ(A). If A generates a C0-semigroup {T (t)}t≥0 and 0 < α < 1, the existence
of {Sα,1(t)}t≥0 can be deduced thanks to a subordination result ([8]). In addition, the mild solution to the
fractional system (1.1) can be written (for 0 < α < 1) in terms of {Sα,1(t)}t≥0 as

u(t) = Sα,1(t)x0 +

∫ t

0

Sα,α(t− s)[Bv(s) + F (s)]ds,

where, {Sα,1(t)}t≥0 and {Sα,α(t)}t≥0 are given explicitly in terms of the semigroup {T (t)}t≥0, as

Sα,1(t)x =

∫ ∞

0

Φα(r)T (rt
α)xdr, t ≥ 0, Sα,α(t) = α

∫ ∞

0

tα−1rΦα(r)T (rt
α)dr, t > 0,

where Φα is the Wright type function ([32, Appendix F], [27]).
In case 1 < α < 2, in the paper [9] is discussed the existence of optimal controls of fractional stochastic

equations and in [10], the authors study the approximate controllability of fractional Sobolev-type differ-
ential equations. In this case, if A generates the fractional resolvent family {Sα,1(t)}t≥0, then the mild
solution to (1.1) is given by

u(t) = Sα,1(t)x0 + Sα,2(t)x1 +

∫ t

0

Sα,α(t− s)[Bv(s) + F (s)]ds.

But, in this case it is necessary to assume the existence of such family {Sα,1(t)}t≥0 generated by A.
We notice that this family {Sα,1(t)}t≥0 corresponds, for 0 < α < 2, to a vector-valued version of the

Mittag-Leffler function and it has been used in many recent works to study the controllability of fractional
continuous systems, see for instance [7, 19, 23, 29, 38] and [39].

More recently, a different and interesting approach to study the approximate controllability of (1.1) for
1 < α < 2 has been introduced in the literature, whose main idea is very similar to the case 0 < α < 1 :
To assume that A is the generator of a cosine family {C(t)}t∈R and, from here, to deduce (using some
special functions) that A is also a generator of a fractional resolvent family {Sα,1(t)}t≥0 of linear operators

in X whose Laplace transform verifies Ŝα,1(λ) = λα−1(λα −A)−1 for all λα ∈ ρ(A). In this case, the mild
solution to (1.1) is given by

u(t) = Sα,1(t)x0 + Sα,2(t)x1 +

∫ t

0

Sα,α(t− s)[Bv(s) + F (s)]ds
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where

(1.4) Sα,1(t)x =

∫ ∞

0

Mα
2
(r)C(rt

α
2 )xdr, Sα,2(t)x =

∫ t

0

Sα,1(s)xds, Sα,α(t) =
α

2

∫ ∞

0

rMα
2
(r)S(rt

α
2 )dr,

where S(t) is the corresponding sine family and Mα
2
is the Mainardi type function, see [44] for a detailed

discussion. These fractional resolvent families generated by A has been used very recently to study the
approximate and finite-approximate controllability of impulsive system of order 1 < α < 2, see [4, 5, 6] for
further details.

All the above shows that certain families of operators generated by A can be a great tool for the study
of the controllability of the corresponding continuous systems.

On the other hand, there is a growing interest in discrete fractional systems, which can be understood as
discretizations of the continuous case. Studies of the controllability of discrete systems of integer order have
been widely discussed in recent decades. For example, in [24, 25] the authors study exact and approximate
controllability of discrete semilinear systems, in [11, 12] is considered the controllability of delay discrete
systems, the [43] focuses on relative controllability of delayed discrete system of order two, and in [20] the
authors study the approximate controllability of abstract discrete systems.

Now, consider the discrete fractional system C∇αun = Aun +Bvn + fn, n ≥ 1,
u0 = x0,
u1 = x1,

(1.5)

where 1 < α < 2, C∇αun is the discrete Caputo fractional derivative (see for instance [15, 26, 36]),
A : D(A) ⊂ X → X is a closed linear operator in a Hilbert space X, B : U → X is a bounded linear
operator, U is a Hilbert space, (fn)n∈N0

is a given sequence, the control v belongs to ℓ2(N0, U) and the
initial states x0, x1 belong to X.

We observe that the problem (1.5) can be seen as a time-discrete version of equation (1.1). As in
the continuous case (1.1), the solution to (1.5) can be written in terms of certain family of sequences of
operators. In fact, if A generates a resolvent sequence {Sn

α,1}n∈N0
, (see Section 2) then the solution to

(1.5) is given by

(1.6) un = Sn
α,1x0 + Sn

α,2x1 + τ

n∑
j=0

Sn−j
α,α [f j +Bvj ], n ≥ 2,

and u0 = x0, u
1 = x1, (see for instance [17, 28]), where

Sn
α,2x = τ

n∑
j=0

Sj
α,1x, and Sn

α,α := τ

n∑
j=0

kα−1
τ (n− j)Sj

α,1, n ∈ N0,

and, for any β > 0 and a size step τ > 0, kβτ is the sequence kβτ (n) :=
τβ−1Γ(β+n)
Γ(β)Γ(n+1) , n ∈ N0, and Γ(·) stands

for the Gamma function.
The controllability of fractional discrete systems in the form of (1.5) has been considered by many

authors in the last years. For example, the paper [35] focuses on the controllability and observability of
discrete-time fractional systems, the author in [22] studies the controllability of nonlinear discrete systems
and the authors of [33] study the local controllability and observability of nonlinear discrete-time systems.
However, all these papers take sequences u, v : N0 → RN and A,B as real-valued matrices.

Despite the growing interest in the study of the controllability of discrete fractional systems, the ap-
proximate controllability of systems with unbounded operators remains unstudied in the literature.

A natural question arise here: Since the families of linear operators generated by A (semigroups, cosine
or fractional resolvent families) constitute a useful tool for the study of the controllability of systems (1.2),
(1.3) and (1.1) in infinite dimensional spaces, and on the other hand, it is possible to write the solution to
(1.5) as a discrete version of the formula for parameter variation in terms of the sequence {Sn

α,1}n∈N0
, Is
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it possible to use these sequences to study the controllability of discrete fractional systems in the form of
(1.5)?

This paper aims to give an answer to this question. Indeed, throughout this work we show that it is
possible to obtain subordination theorems that guarantee that if A generates a discrete cosine, then A is
also the generator of a discrete resolvent sequence {Sn

α,1}n∈N0
. With this, we prove the approximate con-

trollability of problem (1.5) from the approximate controllability of its homogeneous version. In addition,
we show the existence of optimal controls and from this, we deduce its approximate controllability.

The rest of the paper is structured as follows. In Section 2 we give the preliminaries on discrete fractional
calculus and discrete fractional resolvent sequences generated by a closed linear operator A. In addition,
we give some subordination principles, which allows to find conditions on a closed operator A to be the
generator of a resolvent sequence. To be more precise, we show that if A is a generator of a cosine family
of linear operators, then A is the generator of a resolvent sequence {Sn

α,1}n∈N0
. In this case we give an

explicit representation of {Sn
α,1}n∈N0

in terms of some sequences derived from certain special functions.
Moreover, we show that (un)n∈N0

given by (1.6) solves the discrete fractional system (1.5). In Section
3 we study the existence of solutions to the semilinear discrete fractional system

(1.7) C∇αun = Aun +Bvn + f(n, un), n ≥ 2,

under the initial state u0 = x0, u
1 = x1, where f : N0 ×X → X is a given term.

In Section 4 we focus on the approximate controllability of the discrete fractional system (1.7). Here,
we study the existence of an optimal control v to (1.7). And, as a consequence of the previous results in
this Section, we obtain the approximate controllability of (1.7).

Finally, in Section 5 we provide an example of a discrete fractional system to illustrate the results
obtained in the previous sections.

2. Preliminaries

The set of non-negative integer numbers will be denoted by N0. For any n ∈ N0 and τ > 0, we define
the sequence of functions ρτn : [0,∞) → R, given by

ρτn(t) := e−
t
τ

(
t

τ

)n
1

τn!
,

We notice that ρτn are non-negative functions and
∫∞
0

ρτn(t)dt = 1, for all n ∈ N0.

2.1. Discrete fractional calculus and resolvent sequences. Let X be a Banach space. The space of
all vector-valued sequences v : N0 → X is denoted by s(N0, X). For n ∈ N0, ∇τ : s(N0, X) → s(N0, X),
denotes backward Euler operator of order one, which is defined by

∇τv
n :=

vn − vn−1

τ
, n ∈ N.

For m ≥ 2, we define the backward difference operator of order m, ∇m
τ : s(N0, X) → s(N0, X), by

(∇m
τ v)n := ∇m−1

τ (∇τv)
n, n ≥ m.

Here ∇1
τ is understood as ∇1

τ := ∇τ and ∇0
τ as the identity operator. We notice that if v ∈ s(N0, X), then

(∇m
τ v)n =

1

τm

m∑
j=0

(
m

j

)
(−1)jvn−j , n ∈ N.

Following [16, Chapter 1, Section 1.5] we adopt the convention

(2.8)

−k∑
j=1

vj = 0, k ∈ N.
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For any α > 0, we define the sequence

(2.9) kατ (n) :=
τα−1Γ(α+ n)

Γ(α)Γ(n+ 1)
=

∫ ∞

0

ρτn(t)gα(t)dt, n ∈ N0,

where gα(t) :=
tα−1

Γ(α) and Γ(·) is the Gamma function.

Definition 2.1. [36] Let α > 0. The αth−fractional sum of v ∈ s(N0;X) is defined by

(∇−α
τ v)n := τ

n∑
j=0

kατ (n− j)vj , n ∈ N0.

Definition 2.2. [36] Let α ∈ R+ \ N0. The Caputo fractional backward difference operator of order α,

C∇α : s(R+;X) → s(R+;X), is defined by

(C∇αv)n := ∇−(m−α)
τ (∇m

τ v)n, n ∈ N,

where m− 1 < α < m.

Let τ > 0 be a given step-size. For 1 < α < 2, the sequence (C∇αv)n corresponds to an approximation
of the Caputo fractional derivative ∂α

t v of a function v : R0 → X at tn := τn, that is, (C∇αv)n ≈ ∂α
t v(tn),

where

∂α
t v(t) :=

∫ t

0

g2−α(t− s)v′′(s)ds.

The Z-transform of a sequence s ∈ s(N0, X), s̃, is defined by s̃(z) :=
∑∞

j=0 z
−jsj , where sj := s(j) and

z ∈ C. For any α > 0, the Z-transform of the sequence {kατ (n)}n∈N0 is given by

(2.10) k̃ατ (z) = τα−1 zα

(z − 1)α
, for all |z| > 1.

For a Hilbert space X, B(X) denotes the space of linear operators from X into X. Given a sequence of
linear operators {Sn}n∈N0

⊂ B(X) and a scalar sequence c = (cn)n∈N0
, we define its discrete convolution

c ⋆ S as

(c ⋆ S)n :=

n∑
k=0

cn−kSk, n ∈ N0.

Similarly, for scalar valued sequences b = (bn)n∈N0
and c = (cn)n∈N0

, we define (b ⋆ c ⋆ S)n := (b ⋆ (c ⋆ S))n

for all n ∈ N0.
From [36, Corollary 2.9], we have that if α, β > 0, then we have the following semigroup property

(2.11) kα+β
τ (n) = τ

n∑
j=0

kατ (n− j)kβτ (j) = τ(kατ ⋆ kβτ )
n, for any n ∈ N0.

Definition 2.3. Let 1 ≤ α ≤ 2, 0 < β ≤ 2 and τ > 0 be given. The closed linear operator A is called the
generator of the (α, β)-resolvent sequence {Sn

α,β}n∈N0
⊂ B(X) if it satisfies the following conditions

(1) Sn
α,βx ∈ D(A) for all x ∈ X and ASn

α,βx = Sn
α,βAx for all x ∈ D(A), and n ∈ N0.

(2) For each x ∈ X and n ∈ N0,

(2.12) Sn
α,βx = kβτ (n)x+ τA(kατ ⋆ Sα,β)

nx = kβτ (n)x+ τA

n∑
j=0

kατ (n− j)Sj
α,βx.

From [17, Theorem 3.1] it follows that the discrete resolvent family {Sn
α,β}n∈N0

verifies the following
functional equation

Sm
α,β(k

α
τ ⋆ Sα,β)

n − (kατ ⋆ Sα,β)
mSn

α,β = kβτ (m)(kατ ⋆ Sα,β)
n − kβτ (n)(k

α
τ ⋆ Sα,β)

m,



6 RODRIGO PONCE

for all m,n ∈ N0. On the other hand, by [17, Proposition 3.1], τ−α ∈ ρ(A) and

S0
α,βx = τβ−1−α

(
τ−α −A

)−1
x, x ∈ X.

In addition, from [17, Theorem 3.7] it follows that {Sn
α,β}n∈N0

can be written as

(2.13) Sn
α,βx =

n+1∑
j=1

an,jR
j
τx,

where, (an,l) is the sequence of real numbers defined by

a0,1 := kβτ (0), a1,1 := (kβτ (1)k
α
τ (0)− kβτ (0)k

α
τ (1))k

α
τ (0)

−1, a1,2 := kβτ (0)k
α
τ (1)k

α
τ (0)

−1

and for n ≥ 2,

an,n+1 := kατ (1)an−1,nk
α
τ (0)

−1, an,1 :=

kβτ (n)k
α
τ (0)−

n−1∑
j=0

kατ (n− j)aj,1

 kατ (0)
−1,

and

an,l :=

 n−1∑
j=l−2

kατ (n− j)aj,l−1 −
n−1∑

j=l−1

kατ (n− j)aj,l

 kατ (0)
−1, 2 ≤ l ≤ n,

where Rτ : X → D(A) denotes the resolvent operator defined by

(2.14) Rτ := τ−α
(
τ−α −A

)−1
.

Finally, from [17] we have the following result for the Z-transform of {Sn
α,β}n∈N0 .

Proposition 2.4. Let {Sn
α,β}n∈N0 ⊂ B(X) be a discrete (α, β)-resolvent sequence generated by A. Then

its Z-transform satisfies

S̃α,β(z)x =
1

τ

(
z − 1

τz

)α−β ((
z − 1

τz

)α

−A

)−1

x,

for all x ∈ X.

2.2. Subordination theorems. In this subsection we give some subordination principles, which allow us
to find conditions on a closed operator A to be the generator of a resolvent sequence.

Let n ∈ N0, 0 < α < 1 β ≥ 0 and τ > 0. Following to [1, Definition 4.2] or [2, Definition 3.1], we define
the discrete scaled Wright function φτ

α,β as

φτ
α,β(n, j) :=

1

2πi

∫
Υ

zn−1τ k̃βτ (z)

(
1− 1

k̃ατ (z)

)j

dz, j ∈ N0

where Υ is a path oriented counterclockwise that encloses all the singularities of the complex variable

function z 7→
(
1− 1

k̃α
τ (z)

)j
. In addition, we define, for 0 < α < 1 and β ≥ 0, the scaled Wright function in

two variables φα,β by

φα,β(t, s) := tβ−1W−α,β(−st−α), t > 0, s ∈ C,
where, for µ ≥ 0, λ > −1, and z ∈ C, Wλ,µ is the Wright function defined by

Wλ,µ(z) :=

∞∑
j=0

zj

j!Γ(λj + µ)
.

The next result gives some properties of φα,β and φτ
α,β . Its proof follows similarly to [1, Proposition 4.3]

and therefore, we omit it.

Proposition 2.5. Let 0 < α < 1, β ≥ 0, τ > 0 and n, j ∈ N0. Then we have the following properties:
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(1)

∞∑
l=0

φτ
α,β(n, l)k

γ
τ (l) = kβ+αγ

τ (n), where γ > 0.

(2) φτ
α,β(n, j) =

j∑
l=0

(
j

l

)
(−1)lτ l+1kβ−αl

τ (n).

(3)

∫ ∞

0

ρτn(t)φα,β(t, s)dt =

∞∑
l=0

φτ
α,β(n, l)ρ

τ
l (s).

(4) φ̃α,β(z, j) =

j∑
l=0

(
j

l

)
(−1)lτ l+1k̃β−αl

τ (z).

(5) For 0 < τ ≤ 1, φτ
α,β(n, j) ≥ 0.

Definition 2.6. Let τ > 0 be given. The closed linear operator A is called the generator of a cosine
sequence if it is the generator of a (2, 1)-resolvent sequence {Sn

2,1}n∈N0
⊂ B(X). We denote the cosine

sequence {Sn
2,1}n∈N0

simply as {Cn}n∈N0
.

We notice that a cosine sequence {Cn}n∈N0 verifies the following conditions

(1) Cnx ∈ D(A) for all x ∈ X and ACnx = CnAx for all x ∈ D(A), and n ∈ N0.
(2) For each x ∈ X and n ∈ N0,

(2.15) Cnx = x+ τA(k2τ ⋆ C)nx = x+ τA

n∑
j=0

k2τ (n− j)Cjx.

The next results correspond to a discrete counterpart of the subordination theorems in [44, Theorem
3.1].

Theorem 2.7 (Subordination). Let 1 < α < 2. Assume that A is the generator of a cosine sequence
{Cn}n∈N0 . Then A generates the (α, 1)-resolvent sequence {Sn

α,1}n∈N0 defined by

(2.16) Sn
α,1x :=

∞∑
j=0

φτ
α
2 ,1−α

2
(n, j)Cjx, x ∈ X.

Proof. Let x ∈ X. As A is the generator of a cosine sequence {Cn}n∈N0
, ACnx = CnAx, for all x ∈ D(A),

and therefore ASn
α,1x = Sn

α,1Ax for all x ∈ D(A) and n ∈ N0. By (4) in Proposition 2.5 and equation
(2.10), the Z-transform of {Sn

α,1}n∈N0
satisfies

S̃α,1(z) =

∞∑
j=0

φ̃α
2 ,1−α

2
(z, j)Cjx

=

∞∑
j=0

j∑
l=0

(
j

l

)
(−1)lτ l+1k̃

1−α
2 −αl

2
τ (z)Cjx

=

(
τz

z − 1

)1−α
2

∞∑
j=0

j∑
l=0

(
j

l

)(
−τ

(
τz

z − 1

)−α
2

)l

Cjx

=

(
τz

z − 1

)1−α
2

∞∑
j=0

(
1− τ

(
τz

z − 1

)−α
2

)j

Cjx,(2.17)

for all |z| large enough. As(
1− τ

(
τz

z − 1

)−α
2

)j

=

(
(τz)

α
2

(τz)
α
2 − τ(z − 1)

α
2

)−j

,
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and the Z-transform of the cosine sequence {Cn}n∈N0
, verifies (see Proposition 2.5)

C̃(w) =
1

τ

(
w − 1

τw

)((
w − 1

τw

)2

−A

)−1

x,

we have that the series in (2.17) corresponds precisely to the Z-transform of {Cn}n∈N0
evaluated at

w :=
1

1− τ
(
z−1
τz

)α
2
.

Therefore,

S̃α,1(z) =

(
z − 1

τz

)α
2 −1 ∞∑

j=0

(
(τz)

α
2

(τz)
α
2 − τ(z − 1)

α
2

)−j

Cjx =
1

τ

(
z − 1

τz

)α−1((
z − 1

τz

)α

−A

)−1

x,

for all x ∈ X. By the uniqueness of the Z-transform, the last equality means that {Sn
α,1}n∈N0

defined in
(2.16) is an (α, 1)-resolvent sequence generated by A.

□

Theorem 2.8 (Subordination). Let 1 < α < 2. Assume that A is the generator of a cosine sequence
{Cn}n∈N0 . Then A generates the (α, α)-resolvent sequence {Sn

α,α}n∈N0 given by

(2.18) Sn
α,αx =

∞∑
j=0

φτ
α
2 ,α2

(n, j)Cjx, x ∈ X.

Proof. The proof follows similary to the proof of Theorem 2.7 and therefore, we omit it. □

We notice that, from the uniqueness of the Z-transform, it follows that

(2.19) Sn
α,2x = τ(k1τ ⋆ Sα,1)

n = τ

n∑
j=0

Sj
α,1x, x ∈ X,n ∈ N0,

and

(2.20) Sn
α,αx = τ(kα−1

τ ⋆ Sα,1)
n = τ

n∑
j=0

kα−1
τ (n− j)Sj

α,1x, x ∈ X,n ∈ N0.

Lemma 2.9. [17, Theorem 3.5] Assume that A generates a cosine family {C(t))}t≥0 defined in X. If
1 < α < 2, then A is the generator of the (α, 1)-resolvent sequence {Sn

α,1}n∈N0
defined by

(2.21) Sn
α,1x :=

∫ ∞

0

∫ ∞

0

ρτn(t)φα
2 ,1−α

2
(t, s)C(s)x dsdt, t ≥ 0, x ∈ X,

where φα
2 ,1−α

2
is the Wright type function, which can be written as

φα
2 ,1−α

2
(t, s) =

1

π

∫ ∞

0

ρ
α
2 −1e−sρ

α
2 cos α

2 (π−θ)−tρ cos θ sin
(
tρ sin θ − sρ

α
2 sin α

2 (π − θ) + α
2 (π − θ)

)
dρ,

for θ ∈ (π − 2
α , π/2).

Lemma 2.10. [17, Theorem 3.6] Let 1 < α < 2. Assume that A is the generator of a cosine family
{C(t)}t∈R. Then A generates the (α, α)-resolvent sequence {Sn

α,α}n∈N0
given by

Sn
α,αx =

∫ ∞

0

∫ ∞

0

ρτn(t)φα
2 ,α2

(t, s)C(s)x dsdt, x ∈ X,

where φα
2 ,α2

is the Wright type function, which can be represented as

(2.22) φα
2 ,α2

(t, s) = (gα
2
∗ φα

2 ,0(·, s))(t),
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where φα
2 ,0(·, s) is given by

(2.23) φα
2 ,0(t, s) =

1

π

∫ ∞

0

etρ cos θ−sρ
α
2 cosαθ · sin

(
tρ sin θ − sρ sin α

2 θ + θ
)
dρ,

for π/2 < θ < π.

It is a well-known fact that if A is bounded operator, then

(2.24) C(t) :=

∞∑
j=0

t2j

(2j!)
Aj

defines a cosine familiy of operators generated by A, (see for instance [3, Section 3.14]). By Lemma 2.9, A
is the generator of the (α, 1)-resolvent sequence given by

Sn
α,1x =

∫ ∞

0

∫ ∞

0

ρτn(t)φα
2 ,1−α

2
(t, s)C(s)x dsdt.

Since the series in (2.24) converges uniformly, we have by Fubini’s theorem that

Sn
α,1x =

∞∑
j=0

∫ ∞

0

s2j

(2j)!

∫ ∞

0

ρτn(t)φα
2 ,1−α

2
(t, s) dtdsAjx.

By Proposition 2.5, we get

Sn
α,1x =

∞∑
j=0

∞∑
l=0

φτ
α
2 ,1−α

2
(n, l)

∫ ∞

0

ρτl (s)
s2j

(2j)!
dsAjx

=

∞∑
j=0

∞∑
l=0

φτ
α
2 ,1−α

2
(n, l)k2j+1

τ (l)

∫ ∞

0

ρτl+2j(s) dsA
jx

=

∞∑
j=0

∞∑
l=0

φτ
α
2 ,1−α

2
(n, l)k2j+1

τ (l)Ajx

=

∞∑
j=0

kαj+1
τ (n)Ajx.

Similarly, if A is a bounded operator, then A generates the (α, α)-resolvent sequence given by

Sn
α,αx =

∞∑
j=0

kαj+α
τ (n)Ajx.

Example 2.11. If X = R, and A : R → R is defined by Ax = −ax, then C(t) = cos(t
√
a) is a strongly

continuous cosine function generated by A. In this case, the (α, 1)-resolvent sequence generated by A is
given by

Sn
α,1x =

∞∑
j=0

kαj+1
τ (n)ajx =

1

τ
Eτ
α,1(a, n+ 1), n ∈ N0,

where, for α, β > 0, Eτ
α,β is the Mittag-Leffler sequence defined in [1, Section 4].

Example 2.12. Now, if A is a selfadjoint operator on a Hilbert space X, and A is bounded above; that is,
⟨Ax, x⟩X ≤ ω∥x∥2 for all x ∈ D(A) and some ω ∈ R. Then A generates a cosine function. See for instance
[3, Example 3.14.16]. Then it also generates an (α, 1)-resolvent sequence.
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Proposition 2.13. Let A be a closed operator that generates a bounded cosine sequence {Cn}n∈N0
with

∥Cn∥ ≤ M for all n ∈ N0. Let 1 < α < 2 and {Sn
α,1}n∈N0 , {Sn

α,2}n∈N0 and {Sn
α,α}n∈N0 be the resolvent

sequences given, respectively, in (2.16), (2.19) and (2.18). Then

∥Sn
α,1x∥ ≤ M∥x∥, ∥Sn

α,αx∥ ≤ Mkατ (n)∥x∥ and ∥Sn
α,2x∥ ≤ M(n+ 1)τ∥x∥.

for any n ∈ N0 and x ∈ X.

Proof. Let x ∈ X. Since ∥Cn∥ ≤ M, we have by Proposition 2.5 that

∥Sn
α,1x∥ ≤ M

∞∑
l=0

φτ
α
2 ,1−α

2
(n, l)∥x∥ = Mk1τ (n)∥x∥ = M∥x∥,

for any x ∈ X, n ∈ N0, and, similarly,

∥Sn
α,αx∥ ≤ M

∞∑
l=0

φτ
α
2 ,α2

(n, l)∥x∥ = Mkατ (n)∥x∥.

Finally, by (2.19)

∥Sn
α,2x∥ ≤ τ

n∑
j=0

∥Sj
α,1x∥ ≤ M(n+ 1)τ∥x∥.

□

Remark 2.14. Suppose that A is the generator of an (α, 1)-resolvent sequence {Sn
α,1}n∈N0

such that ∥Sn
α,1∥ ≤

M for all n ∈ N0. Since 0 < α− 1 < 1 and n ≥ 0, we have (by [14, Inequality (1.1)]) that

kατ (n) =
τα−1Γ(α+ n)

Γ(α)Γ(n+ 2)
(n+ 1) <

(τ(n+ 1))α−1

Γ(α)
,

and, thus the semigroup property (2.11) implies that

(2.25) ∥Sn
α,α∥ ≤ τ

n∑
j=0

kα−1
τ (n− j)∥Sj

α,1∥ ≤ Mkα−1
τ (n) ≤ M

(τ(n+ 1))α−1

Γ(α)
.

Proposition 2.15. If the resolvent operator Rτ defined in (2.14) is compact for all τ−α ∈ ρ(A), then Sn
α,β

is a compact operator for all n ∈ N0.

Proof. The proof follows from the representation as a finite sum of Sn
α,β given in (2.13). □

3. Existence of solutions.

In this section we study the existence of solutions to discrete fractional system of order 1 < α < 2.
Consider the system  C∇αun = Aun +Bvn, n ≥ 2,

u0 = x0

u1 = x1,
(3.26)

where A : D(A) ⊂ X → X is a closed linear operator in X, B : U → X is a bounded linear operator, the
control v ∈ ℓ2(N0, U) and x0, x1 ∈ X.

Proposition 3.16. Let 1 < α ≤ 2. Assume that A is the generator of an (α, 1)-resolvent sequence
{Sn

α,1}n∈N0
. If x0, x1 ∈ X, then the discrete fractional system (3.26) has a unique solution for each control

v ∈ ℓ2(N0, U) given by the sequence

(3.27) un := Sn
α,1x0 + τ(k1τ ⋆ Sα,1)

nx1 + τ2(kα−1
τ ⋆ Sα,1 ⋆ Bv)n,

for all n ≥ 2 and u0 := x0, u
1 := x1.
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Proof. Since {Sn
α,1}t≥0 is an (α, 1)-resolvent sequence, un defined in (4) belongs to D(A) for all n ∈ N0,

and

Sn
α,1x = x+ τA

n∑
j=0

kατ (n− j)Sj
α,1x, n ≥ 0, x ∈ X.(3.28)

Now, for n ≥ 2, we have

(3.29) C∇α(Sα,1x)
n = ∇−(2−α)

τ ∇2
τ (Sα,1x)

n = τ

n∑
j=0

k2−α
τ (n− j)(∇2

τSα,1x)
j .

By (3.28), we obtain

(∇2
τSα,1x)

j =
1

τ2
(Sj

α,1x− 2Sj−1
α,1 x+ Sj−2

α,1 x)

=
A

τ

[ j∑
l=0

kατ (j − l)Sl
α,1x− 2

j−1∑
l=0

kατ (j − 1− l)Sl
α,1x+

j−2∑
l=0

kατ (j − 2− l)Sl
α,1x

]
,

for all j ≥ 2. On the other hand, by (2.11) we obtain that

(3.30) τ

n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kατ (j− l)Sl
α,1x = τ(k2−α

τ ⋆ kατ ⋆ Sα,1)
n = τ(k1τ ⋆ k

1
τ ⋆ Sα,1)

nx = τ

n∑
j=0

j∑
l=0

Sl
α,1x,

for all n ≥ 2. Similarly, and by convention (2.8), we get that

(3.31)

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − 1− l)Sl
α,1x =

n−1∑
j=0

j∑
l=0

Sl
α,1x

and

(3.32)

n∑
j=0

k2−α
τ (n− j)

j−2∑
l=0

kατ (j − 2− l)Sl
α,1x =

n−2∑
j=0

j∑
l=0

Sl
α,1x.

Hence, the equations (3.29)–(3.32) imply that

C∇α(Sα,1x)
n=A

n∑
j=0

k2−α
τ (n− j)

[
j∑

l=0

kατ (j − l)Sl
α,1x− 2

j−1∑
l=0

kατ (j − 1− l)Sl
α,1x+

j−2∑
l=0

kατ (j − 2− l)Sl
α,1x

]

=A

 n∑
j=0

j∑
l=0

Sl
αx− 2

n−1∑
j=0

j∑
l=0

Sl
α,1x+

n−2∑
j=0

j∑
l=0

Sl
α,1x


=ASn

αx,

for all n ≥ 2 and x ∈ X. Therefore,

(3.33) C∇αSn
α,1x0 = ASn

α,1x0.

On the other hand, by definition we can write

(3.34) C∇α(τ(k1τ ⋆ Sα,1)
n)x = τ2

n∑
j=0

k2−α
τ (n− j)∇2

τ (k
1
τ ⋆ Sα,1)

jx.
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As k1τ (n) = 1 for all n ∈ N0, we have

∇2
τ (k

1
τ ⋆ Sα,1)

j =
1

τ2

[
j∑

l=0

Sl
α,1x− 2

j−1∑
l=0

Sl
α,1x+

j−2∑
l=0

Sl
α,1x

]

=
1

τ2
[Sj

α,1x− Sj−1
α,1 x]

=
A

τ

[
j∑

l=0

kατ (j − l)Sl
α,1x−

j−1∑
l=0

kατ (j − 1− l)Sα,1x

]
,

and, by (3.34), (3.30),(3.31) and (3.32) we have

C∇α(τ(k1τ ⋆ Sα,1)
n)x = τA

 n∑
j=0

k2−α
τ (n− j)

j∑
l=0

kατ (j − l)Sl
α,1x−

n∑
j=0

k2−α
τ (n− j)

j−1∑
l=0

kατ (j − l)Sl
α,1x


= τA

 n∑
j=0

j∑
l=0

Sl
α,1x−

n−1∑
j=0

j∑
l=0

Sl
α,1x


= A(τ(k1τ ⋆ Sα,1)

nx), x ∈ X.

This implies that

(3.35) C∇α(τ(k1τ ⋆ Sα,1)
n)x1 = A(τ(k1τ ⋆ Sα,1)

n)x1, n ≥ 2.

Finally, by definition we have

C∇α(τ2(kα−1
τ ⋆ Sα,1 ⋆ Bv)n) = ∇−(2−α)

τ ∇2
τ (τ

2(kα−1
τ ⋆ Sα,1 ⋆ Bv))n

= τ

n∑
j=0

k2−α
τ (n− j)∇2

τ (τ
2(kα−1

τ ⋆ Sα,1 ⋆ Bv)j),(3.36)

for all n ≥ 2. As {Sn
α,1}n∈N0

is an (α, 1)-resolvent sequence, we get by (3.28)

(3.37) (kα−1
τ ⋆ Sα,1 ⋆ Bv)n =

1

τ

n∑
j=0

kατ (n− j)Bvj + τA

n∑
j=0

kατ (n− j)(kα−1
τ ⋆ Sα,1 ⋆ Bv)j , n ≥ 2.

By (3.36),(3.37), and (3.30)–(3.32) we have

C∇α(τ2(kα−1
τ ⋆ Sα,1 ⋆ Bv)n) = ∇−(2−α)

τ ∇2
τ (τ

2(kα−1
τ ⋆ Sα,1 ⋆ Bv))n

=

n∑
j=0

k2−α
τ (n− j)

[
j∑

l=0

kατ (j − l)Bvl − 2

j−1∑
l=0

kατ (j − 1− l)Bvl

+

j−2∑
l=0

kατ (j − 2− l)Bvl

]

+ τ2A

n∑
j=0

k2−α
τ (n− j)

[
j∑

l=0

kατ (j − l)(kα−1
τ ⋆ Sα,1 ⋆ Bv)l

− 2

j−1∑
l=0

kατ (j − 1− l)(kα−1
τ ⋆ Sα,1 ⋆ Bv)l +

j−2∑
l=0

kατ (j − 2− l)(kα−1
τ ⋆ Sα,1 ⋆ Bv)l

]
= τ2(kα−1

τ ⋆ Sα,1 ⋆ Bv)n +Bvn.(3.38)
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Now, we define the sequence (un)n∈N0
by un := Sn

α,1x0 + τ(k1τ ⋆ Sα,1)
nx1 + τ2(kα−1

τ ⋆ Sα,1 ⋆ Bv)n), for

n ≥ 2 and u0 := x0, u
1 := x1, then by (3.33), (3.35) and (3.38) we have that

C∇α(un) = C∇α
(
Sn
α,1x0 + τ(k1τ ⋆ Sα,1)

nx1 + τ2(kα−1
τ ⋆ Sα,1 ⋆ Bv)n)

)
= ASn

α,1x0 +A(τ(k1τ ⋆ Sα,1)
nx1) + fn +A(τ2(kα−1

τ ⋆ Sα,1 ⋆ Bv)n)

= Aun +Bvn,

for all n ≥ 2, that is, (un)n∈N0
solves the equation

C∇αun = Aun +Bvn, n ≥ 2,

under the initial conditions u0 = x0, and u1 = x1. The uniqueness, follows from [17, Proposition 3.3]. □

Remark 3.17. From (2.19) and (2.20) it follows that that solution to Equation (3.26) can be written as

un := Sn
α,1x0 + Sn

α,2x1 + τ(Sα,α ⋆ Bv)n, n ≥ 2.

Similarly to Proposition 3.16, we can prove the following result.

Proposition 3.18. Assume that A is the generator of an (α, 1)-resolvent sequence {Sn
α,1}n∈N0

. If (f j)j∈N0

is a given sequence and x0, x1 ∈ X, then the discrete fractional system (1.5) has a unique solution for each
control v ∈ ℓ2(N0, U) given by the sequence

un := Sn
α,1x0 + τ(k1τ ⋆ Sα,1)

nx1 + τ2(kα−1
τ ⋆ Sα,1 ⋆ Bv)n + τ2(kα−1

τ ⋆ Sα,1 ⋆ f)
n,

for all n ≥ 2 and u0 := x0, u
1 := x1.

Finally, let us consider the following discrete fractional system C∇αun = Aun + f(n, un) +Bvn, n ≥ 2,
u0 = x0

u1 = x1,
(3.39)

where A : D(A) ⊂ X → X is a closed linear operator in X, B : U → X is a bounded linear operator, the
control v ∈ ℓ2(N0, U), x0, x1 ∈ X, and f : N0 ×X → X.

Inspired in Propositions 3.16 and 3.18 we introduce the following definition of solution to Problem (3.39).

Definition 3.19. A sequence (un)n∈N0 is called a solution of the discrete fractional system (3.39) if it
satisfies

un = Sn
α,1x0 + Sn

α,2x1 + τ

n∑
j=0

Sn−j
α,α [f(j, uj) +Bvj ],

for all n ≥ 2 and u0 := x0, u
1 := x1, for x0, x1 ∈ X and v ∈ ℓ2(N0, U).

4. Approximate controllability

In this section we study the approximate controllability of discrete fractional systems (3.26) and (3.39)
of order 1 < α < 2. By Proposition 3.16 and Remark 3.17, the Problem (3.26) has a unique solution
(un)n∈N0

given by

un := Sn
α,1x0 + Sn

α,2x1 + τ(Sα,α ⋆ Bv)n,

for all n ≥ 2 and u0 := x0, u
1 := x1.

Let (un)n∈N0
be the solution to the discrete fractional system (3.26) corresponding to the control v.

Definition 4.20. The system (3.26) (respectively, (3.39)) is said to be approximately controllable on
[0, N0]N0

:= [0, N0] ∩ N0 if for any x0, x1 ∈ X, ε > 0 and every desired final state xN0
∈ X, there exists a

control v ∈ ℓ2(N0, U) such that, the corresponding solution (un)n∈N0
of (3.26) (respectively, (3.39)) satisfies

∥uN0 − xN0∥ < ε.
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To study the approximate controllability of the system (3.26) we need to introduce the following oper-
ators:

For any fixed n ∈ N0, we define Γn,τ : ℓ2(N0, U) → X by

Γn,τv := τ

n∑
j=0

Sn−j
α,α Bvj , v = (vj)j∈N0 ∈ ℓ2(N0, U),

and the grammian map Ln,τ : X → X by Ln,τ := Γn,τΓ
∗
n,τ , where ∗ is used to denote the adjoint. In

addition, we define the resolvent operator R(λ, Ln,τ ) := (λI + Ln,τ )
−1, for λ > 0.

Proposition 4.21. The adjoint Γ∗
n,τ : X → ℓ2(N0, U) of the operator Γn,τ is given by

(Γ∗
n,τx)

j =

{
τB∗Sn−j∗

α,α x, 0 ≤ j ≤ n,
0, j > n.

for each n ∈ N0 and x ∈ X. Moreover, Ln,τx = τ2
∑n

j=0 S
n−j
α,α BB∗Sn−j∗

α,α x, for n ∈ N0, x ∈ X.

Proof. Let x ∈ X and v ∈ ℓ2(N0, U). If n ∈ N0, then

⟨Γn,τv, x⟩X = τ

n∑
j=0

⟨Sn−j
α,α Bvj , x⟩U =

n∑
j=0

⟨vj , τB∗Sn−j∗

α,α x⟩U = ⟨v,Γ∗
n,τx⟩ℓ2(N0,U).

□

By the representation of Sn
α,α as a finite combination of the resolvent operator Rτ given in (2.13), we

observe that if A is a closed and densely defined operator on X, then the adjoint Sn∗

α,α : X → X of Sn
α,α is

given by

(4.40) Sn∗

α,αx =

n+1∑
j=1

an,j(R
j
τ )

∗x =

n+1∑
j=1

an,jτ
−αj

(
τ−α −A∗)−j

x,

for each n ∈ N0 and x ∈ X.
The next result follows similarly to [25, Theorem 2.1]. We omit its proof.

Proposition 4.22. The system (3.26) is approximately controllably on [0, N0]N0 if and only if, one of the
following statements holds

(1) Rang(ΓN0,τ ) = X.
(2) ker(Γ∗

N0,τ
) = {0}.

(3) ⟨LN0,τx, x⟩ > 0 for all 0 ̸= x ∈ X.

(4) If B∗SN0−j∗

α,α x = 0 for all 0 ≤ j ≤ N0, then x = 0.

(5) limλ→0+ λ(λI + LN0,τ )
−1 = 0 in the strong operator topology.

(6) For all x ∈ X we have that ΓN0,τvλ = x− λ(λI + LN0,τ )
−1x, where

vλ = vN0,λ := Γ∗
N0,τ (λI + LN0,τ )

−1x ∈ ℓ2(N0, U), λ ∈ (0, 1].

By (5) and (6) in Proposition 4.22 we conclude that

(4.41) lim
λ→0+

ΓN0,τvλ = x, for all x ∈ X.

This means that the family of operators TN0,λ : X → ℓ2(N0, U) defined by

TN0,λx := Γ∗
N0,τ (λI + LN0,τ )

−1x, λ ∈ (0, 1],

is an approximate inverse of ΓN0,τ , that is,

(4.42) lim
λ→0+

ΓN0,τTN0,λ = I.
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Now, we study the problem of finding a control v to Problem (3.26). Define the cost functional J :
ℓ∞(N0, X)× ℓ2(N0, U) → R by

(4.43) J(u, v) := ∥uN0 − xN0
∥2 + λ

N0∑
j=0

∥vj∥2,

where λ > 0, u = (un)n∈N0
is the solution to (3.26) with the control v ∈ ℓ2(N0, U) and desired state

xN0
∈ X.

We define the admissible class Aad by

Aad := {(u, v) : u is the unique solution to (3.26) with control v ∈ Uad}

where Uad is the admissible control class, that is Uad = ℓ2(N0;U). By Proposition 3.16 we notice that if A
generates an (α, 1)-resolvent sequence then Aad ̸= ∅.

Let us to consider the optimal control problem

(4.44) min
(u,v)∈Aad

J(u, v).

An optimal solution to Problem (4.44) is a solution (u0, v0) (known as optimal pair) of (4.44). The control
v0 is called an optimal control.

The next result is a discrete version of [37, Theorem 3.1] and gives a solution to the Problem (4.44).

Theorem 4.23. Let τ > 0. Assume that A is the generator of an (α, 1)-resolvent sequence {Sn
α,1}n∈N0

such that ∥Sn
α,1∥ ≤ M for all n ∈ N0. Suppose that (τ−α −A)−1 is a compact operator for τ−α ∈ ρ(A). Let

x0, x1 ∈ X be given. Then there exists at least one pair (u0, v0) ∈ Aad such that J(·, ·) attains its minimum
at (u0, v0).

Proof. Let J := infv∈Uad
J(u, v). As 0 ≤ J < ∞, by the definition of infimum, there exists a sequence

vn ∈ Uad such that

lim
n→∞

J(un, vn) = J,

where un is the unique solution to (3.26) with control vn and u0
n = x0, u

1
n = x1 and the desired state

xN0
∈ X. By Proposition 3.16 and Remark 3.17, un is given by

(4.45) um
n = Sm

α,1x0 + Sm
α,2x1 + τ

m∑
j=0

Sm−j
α,α Bvjn, m ≥ 2.

Since 0 ∈ Uad we may assume that J(un, vn) ≤ J(u, 0). By the definition of J(·, ·) we have

J(un, vn) = ∥uN0
n − xN0

∥2 + λ

N0∑
j=0

∥vjn∥2 ≤ ∥uN0 − xN0
∥2 ≤ 2(∥uN0∥2 + ∥xN0

∥2).

Therefore, there exists R > 0 (large enough) such that 0 ≤ J(un, vn) ≤ R for all n ∈ N0. This also implies
that

(4.46)

N0∑
j=0

∥vjn∥2 ≤ C,
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for all n ∈ N0, where C is a positive constant. By (4.45) and (2.19) we may proceed as in the proof of
(2.25) to obtain

∥um
n ∥ ≤ ∥Sm

α,1x0∥+ ∥Sm
α,2x1∥+ τ

m∑
j=0

∥Sm−j
α,α Bvjn∥

≤ M∥x0∥+M(m+ 1)τ∥x1∥+
ταM(m+ 1)αm1/2∥B∥

Γ(α)

 m∑
j=0

∥vjn∥2
1/2

,

for all 0 ≤ m ≤ N0. This means that (un)n∈N0 is a bounded sequence. Hence, there exists a subsequence
(unk

)k∈N0
of (un)n∈N0

which converges weakly to u0 in ℓ2(N0, X). Similarly, from (4.46) we can find a
subsequence (vnk

)k∈N0
of (vn)n∈N0

converging weakly to v0 in ℓ2(N0, U), and as B is a bounded operator,
Bvnk

converges weakly to Bv0 as k → ∞.
Since (τ−α − A)−1 is a compact operator, the representation (2.13) of Sm

α,α implies that Sm
α,α is a

compact operator for all m ∈ N0. By [42, Corollary 2.3], the operator T : ℓ2(N0, X) → ℓ∞(N0, X) given by
T (g)(m) :=

∑m
j=0 S

m−j
α,α gj , for g = (gm)m∈N0

is also compact. Hence,

(4.47)

∥∥∥∥∥∥
m∑
j=0

Sm−j
α,α Bvjnk

−
m∑
j=0

Sm−j
α,α Bvj0

∥∥∥∥∥∥→ 0, as k → ∞,

for all 0 ≤ m ≤ N0. Let w0 = (wj
0)j∈N0

be the solution to (3.26) with control v0 = (vj0)j∈N0
(which exists

and it is unique by Proposition 3.16). Since unk
is the unique solution to (3.26) with control vnk

, by (4.45)
and (4.47) we obtain

∥um
nk

− wm
0 ∥ → 0 as k → ∞,

for all 0 ≤ m ≤ N0. As (unk
)k∈N0

converges weakly to u0, we have w0 = u0, and

(4.48) um
0 = Sm

α,1x0 + Sm
α,2x1 + τ

m∑
j=0

Sm−j
α,α Bvj0, m ≥ 2,

where u0
0 = x0 and u1

0 = x1. This means that the sequence u0 = (um
0 )m∈N0

is a solution to (3.26) with
control v0 = (vm0 )m∈N0 and by Proposition 3.16 it is the unique solution to (3.26). This means that
(u0, v0) ∈ Aad.

Finally, we claim that (u0, v0) is a minimizer, that is J = J(u0, v0). In fact, by [13, Propositions III.1.6,
III.1.10 and II.4.5] J(·, ·) is continuous, convex on ℓ2(N0, X)×ℓ2(N0, U) and weakly lower semi-continuous.
Since (unk

, vnk
) converges weakly to (u0, v0) in ℓ2(N0, X)× ℓ2(N0, U) we have

J ≤ J(u0, v0) ≤ lim inf
k→∞

J(unk
, vnk

) = lim
k→∞

J(unk
, vnk

) = J,

and therefore J = J(u0, v0).
□

Remark 4.24. As J defined in (4.43) is convex, the system (3.26) is linear and the admissible control class
Uad = ℓ2(N0;U) is convex, then the optimal control v0 Theorem 4.23 is unique.

Proposition 4.25. Suppose that v = (vj)j∈N0 is the optimal control of (4.43), then

vj = τB∗SN0−j∗

α,α R(λ, LN0,τ )p(u), 0 ≤ j ≤ N0,

where

(4.49) p(u) := xN0
− SN0

α,1x0 − SN0
α,2x1.



CONTROLLABILITY OF DISCRETE FRACTIONAL SYSTEMS 17

Proof. Let v the optimal control of (4.43). Define I(ε) := J(uv+εw, v+εw) where w ∈ ℓ2(N0, U) and uv+εw

is the unique solution of (3.26) with respect to the control v + εw. Then uv+εw verifies

un
v+εw = Sn

α,1x0 + Sn
α,2x1 + τ

n∑
j=0

Sn−j
α,α B(vj + εwj), n ≥ 2.

Computing the variation of J, we get

d

dε
I(ε)

∣∣
ε=0

= 2τ

N0∑
j=0

〈
uN0 − xN0

, SN0−j
α,α Bwj

〉
+2

N0∑
j=0

λ
〈
vj , wj

〉
= 2

N0∑
j=0

〈
τB∗SN0−j∗

α,α (uN0 − xN0
) + λvj , wj

〉
.

As ε = 0 is a critical point of I and w ∈ ℓ2(N0, U) is an arbitrary element, we get

(4.50) vj = −λ−1τB∗SN0−j∗

α,α (uN0 − xN0), 0 ≤ j ≤ N0.

Then

uN0 = SN0
α,1x0+SN0

α,2x1−τ2λ−1
N0∑
j=0

SN0−j
α,α BB∗SN0−j∗

α,α (uN0−xN0
) = SN0

α,1x0+SN0
α,2x1−λ−1LN0,τ (u

N0−xN0
).

For p defined in (4.49) we have

uN0 − xN0
= −p(u)− λ−1LN0,τ (u

N0 − xN0
),

which implies that

uN0 − xN0
= −λ(λI + LN0,τ )

−1p(u) = −λR(λ, LN0,τ )p(u).

From (4.50) we conclude that

vj = τB∗SN0−j∗

α,α R(λ, LN0,τ )p(u), 0 ≤ j ≤ N0.

□

Motivated by the linear case, for any λ > 0 and xN0
∈ X, consider the system

un = Sn
α,1x0 + Sn

α,2x1 + τ

n∑
j=0

Sn−j
α,α [f(j, uj) +Bvj ], 2 ≤ n ≤ N0, and u0 = x0, u

1 = x1,

vj = τB∗SN0−j∗

α,α R(λ, LN0,τ )p(u), 0 ≤ j ≤ N0,

p(u) = xN0
− SN0

α,1x0 − SN0
α,2x1 − τ

N0∑
j=0

SN0−j
α,α f(j, uj).

(4.51)

where x0, x1 ∈ X and v = (vj)j∈N0
∈ ℓ2(N0, U). To show the approximate controllability of the discrete

fractional system (3.39) we will use (4.51). More precisely, under suitable conditions, we will first show

that for any λ > 0 and xN0
∈ X, the system (3.39) has at least one solution uλ = (uj

λ)j∈N0
for any control

v = (vj)j∈N0 satisfying (4.51). And, then for any xN0 ∈ X, we will use uλ to approximate xN0 .
For r > 0 we define Wr := {u ∈ ℓ∞(N0, X) : ∥u∥ ≤ r}. Clearly, Wr is a closed, bounded and convex set.

Consider the following assumptions

H1: For f : N0 ×X → X there exists a constant K such that ∥f(j, x)∥ ≤ K for all (j, x) ∈ N0 ×X.
H2: (τ−α − A)−1 is a compact operator for all τ−α ∈ ρ(A) and A generates an (α, 1)-resolvent

sequence such that ∥Sn
α,1∥ ≤ M for all n ∈ N0.

H3: ∥R(λ, LN0,τ )∥ ≤ 1
λ for all λ > 0.

Theorem 4.26. Assume that conditions (H1)−(H3) are satisfied. Then the system (3.39) with the control
v = (vj)j∈N0

given in (4.51) has at least one solution.
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Proof. For a fixed xN0
∈ X and λ > 0, consider the solution operator Q : ℓ∞(N0, X) → ℓ∞(N0, X) defined

by

(Qu)n =

 Sn
α,1x0 + Sn

α,2x1 + τ

n∑
j=0

Sn−j
α,α [f(j, uj) +Bvj ], 2 ≤ n ≤ N0,

0, n > N0,

and (Qu)0 = x0, (Qu)1 = x1, where u = (uj)j∈N0 ∈ ℓ∞(N0, X) and the control v is given in (4.51) by

vj = τB∗SN0−j∗

α,α R(λ, LN0,τ )p(u), 0 ≤ j ≤ N0,

with

p(u) := xN0 − SN0
α,1x0 − SN0

α,2x1 − τ

N0∑
j=0

SN0−j
α,α f(j, uj).

As (τ−α −A)−1 is a compact operator, Sn
α,1, S

n
α,2 and Sn

α,α are compact operators (by (2.13)). Since Q
has finite rank, Q is a compact operator.

We will show that there exists a positive number r0 > 0 such that QWr0 ⊂ Wr0 . In fact, (H2), (2.19),
(2.20) and (2.25) imply that

(4.52) ∥Sn
α,1∥ ≤ M, ∥Sn

α,1∥ ≤ M(n+ 1)τ, ∥Sn
α,α∥ ≤ M

(τ(n+ 1))α−1

Γ(α)
,

for all n ∈ N0. Thus, for any 0 ≤ n ≤ N0 we have

∥(Qu)n∥ ≤ M∥x0∥+M(n+ 1)τ∥x1∥+KCα + τ

n∑
j=0

∥Sn−j
α,α Bvj∥,

where Cα := ταM(N0+1)α

Γ(α) . In addition, as

∥p(u)∥ ≤ ∥xN0∥+M∥x0∥+M(N0 + 1)τ∥x1∥+KCα,

we have

τ

n∑
j=0

∥Sn−j
α,α Bvj∥ ≤ τ2∥B∥2∥Sn−j

α,α ∥∥SN0−j
α,α ∥∥R(λ, LN0,τ )∥∥p(u)∥

≤ τ2C
2

α∥B∥2

λ

[
∥xN0

∥+M∥x0∥+M(N0 + 1)τ∥x1∥+KCα

]
.

Therefore, for r0 > 0 large enough we have QWr0 ⊂ Wr0 . By the Schauder’s fixed point theorem, the
operator Q has a fixed point in Wr0 , which is a solution to the system (3.39).

□

Finally, we consider the following hypothesis:

H4: λR(λ, LN0,τ ) → 0 as λ → 0+ in the strong operator topology.

Theorem 4.27. Assume that conditions (H1)−(H4) are satisfied. Then the system (3.39) is approximately
controllable on [0, N0]N0 .

Proof. By Theorem 4.26, we have that for every λ > 0 and xN0
∈ X, there exists a solution uλ = (uj

λ)j∈N0

of the system (3.39) with the control

vjλ = τB∗SN0−j∗

α,α R(λ, LN0,τ )p(uλ), 0 ≤ j ≤ N0,
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where p is defined in (4.51). Then

uN0

λ = SN0
α,1x0 + SN0

α,2x1 + τ

N0∑
j=0

SN0−j
α,α f(j, uj

λ) + τ

N0∑
j=0

SN0−j
α,α Bvjλ

= SN0
α,1x0 + SN0

α,2x1 + τ

N0∑
j=0

SN0−j
α,α f(j, uj

λ) + LN0,τR(λ, LN0,τ )p(uλ)

= xN0 − p(uλ) + LN0,τR(λ, LN0,τ )p(uλ)

= xN0 − λR(λ, LN0,τ )p(uλ).(4.53)

By (H1), we have

τ

N0∑
j=0

∥f(j, uj
λ)∥ ≤ KN0,

and therefore, there exists a subsequence of f(·, u·
λ), denoted again by f(·, u·

λ), which converges weakly to
an element w = (wj)j∈N0 ∈ ℓ2(N0, X). Now, we define

z := xN0
− SN0

α,1x0 − SN0
α,2x1 + τ

N0∑
j=0

SN0−j
α,α wj .

Hence,

(4.54) ∥p(uλ)− z∥ ≤ τ

∥∥∥∥∥∥
N0∑
j=0

SN0−j
α,α [f(j, uj

λ)− wj ]

∥∥∥∥∥∥ .
Since (τ−α − A)−1 is a compact operator, Sn

α,α is a compact operator for all n ∈ N0, and therefore the

operator T : ℓ2(N0, X) → ℓ∞(N0, X) defined by T (g)(m) :=
∑m

j=0 S
m−j
α,α gj , for g = (gm)m∈N0 ∈ ℓ2(N0, X)

is compact. This implies that∥∥∥∥∥∥
N0∑
j=0

SN0−j
α,α [f(j, uj

λ)− wj ]

∥∥∥∥∥∥→ 0, as λ → 0+.

From (4.53), (4.54) and (H4) it follows that

∥uN0

λ −xN0
∥ ≤ ∥λR(λ, LN0,τ )p(uλ)∥ ≤ ∥λR(λ, LN0,τ )∥∥p(uλ)− z∥+ ∥λR(λ, LN0,τ )z∥ → 0, as λ → 0+.

We conclude that the system (3.39) is approximately controllable on [0, N0]N0
. □

5. Application

In this section, we discuss the approximate controllability of a fractional discrete system of order 1 <
α < 2.

On the space X = L2([0, π]) we define the operator A : D(A) ⊂ X → X by Aw(x) = w′′(x) with
domain D(A) := H2([0, π]) ∩H1

0 ([0, π]). Then A is a self-adjoint operator, the spectrum of A is given by

σ(A) = {−m2 : m ∈ N}, and the corresponding eigenfunctions are given by ϕm(x) =
√

2
π sin(mx), for

x ∈ [0, π]. Moreover, A can be written as

(5.55) Aw =

∞∑
m=1

−m2⟨w, ϕm⟩ϕm, w ∈ D(A).
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Let us consider the problem C∇αun(s) = Aun(s) + f(n, un(s)) + vn(s), n ≥ 2,
u0(s) = x0(s)
u1(s) = x1(s),

(5.56)

where s ∈ [0, π], A is defined above, B : U → X is the bounded linear operator defined by (Bv)j = vj , for
v = (vj)jN0

∈ ℓ2(N0, U), f verifies the condition (H1) and x0, x1 ∈ X.
Writing un := un(·), vn := vn(·), x0 = x0(·), x1 = x1(·), the system (5.56) can be expressed in the

abstract form (3.39).
We notice that this problem can be seen as a time-discretization of the problem

∂α
t u(t, s) =

∂2u(t, s)

∂s2
+ v(t, s) + f(t, u(t, s)), t ∈ [0, T ],

u(t, 0) = u(t, π) = 0, t ∈ [0, T ]
u(0, s) = φ0(s), s ∈ [0, π]
ut(0, s) = φ1(s), s ∈ [0, π],

(5.57)

where T > 0 and φ0, φ1 ∈ X are given functions. In fact, writing u(t) := u(t, ·), v(t) := v(t, ·) and
f(t) = f(t, ·), the problem (5.57) can be written in the abstract form ∂α

t u(t) = Au(t) + v(t) + f(t, u(t)), t ∈ [0, T ],
u(0) = φ0,
ut(0) = φ1

(5.58)

Multiplying (5.58) by ρτn(t) (for a fixed τ > 0) and integrating over R we obtain (similarly to [36, Section
2]) the problem (5.56), where C∇αun(s) =

∫∞
0

ρτn(t)∂
α
t u(t, s)dt, u

n(s) =
∫∞
0

ρτn(t)u(t, s)dt, (analogously
for vn, fn) and x0 = φ0, x1 = φ1. We notice that C∇αun and un correspond to an approximation of the
Caputo fractional derivative ∂α

t u(t) and u(t), respectively, evaluated at tn := nτ.
On the other hand, it is a well-known fact that A generates the cosine family {C(t)}t∈R given by

(5.59) C(t)x =

∞∑
m=1

cos(mt)⟨x, ϕm⟩ϕm, x ∈ X.

Then A generates the cosine sequence Cn defined by

Cnx =

∫ ∞

0

ρτn(t)C(t)x dt, n ∈ N0.

In fact, as A generates the cosine family {C(t)}t∈R, we have

(5.60) C(t)x = x+A

∫ t

0

(t− s)C(s)x ds, t > 0, x ∈ X.

Multiplying (5.60) by ρτn(t) and integrating over R, we get (2.15).
We notice that by [18, Formula 3.944-6, p.498], Cn can be computed explicitly:

Cnx =

∞∑
m=1

1

τn+1n!

∫ ∞

0

e−
t
τ tn cos(mt) dt⟨x, ϕm⟩ϕm

=

∞∑
m=1

1

τn+1

1

(m2 + τ−2)(n+1)/2
cos ((n+ 1) arctan(τm)) ⟨x, ϕm⟩ϕm.

This implies that (for n ≥ 1)

∥Cnx∥ ≤ 1

τn+1

∞∑
m=1

1

m2
∥x∥ ≤ π2

6τ2
∥x∥.
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As cos(arctan(ar)) = 1/
√
a2r2 + 1 we obtain for n = 0, that

C0x =

∞∑
m=1

1

(m2 + τ−2)1/2
cos (arctan(τm)) ⟨x, ϕm⟩ϕm ≤ 1

τ

∞∑
m=1

1

m2
⟨x, ϕm⟩ϕm ≤ π2

6τ
∥x∥.

By Theorem 2.7, A generates the (α, 1)-resolvent sequence {Sn
α,1}n∈N0

given by

Sn
α,1x :=

∞∑
j=0

φτ
α
2 ,1−α

2
(n, j)Cjx, x ∈ X,

and by Propostion 2.5 we obtain

∥Sn
α,1x∥ ≤

∞∑
j=0

φτ
α
2 ,1−α

2
(n, j)∥Cjx∥ ≤ π2

6
max{1/τ, 1/τ2}

∞∑
j=0

φτ
α
2 ,1−α

2
(n, j) =

π2

6
max{1/τ, 1/τ2} =: M,

for all n ∈ N0. This means that {Sn
α,1}n∈N0

verifies the hypothesis (H2). We notice that by (2.11) and
(5.55), the resolvent sequence {Sn

α,1}n∈N0
can be written as

Sn
α,1x =

∞∑
m=1

∞∑
j=0

kαj+1
τ (n)mj⟨x, ϕm⟩ϕm, x ∈ X.

On other hand, as A is a self-adjoint operator, by (4.40) we obtain that if x ∈ X then

⟨LN0,τx, x⟩ = τ2
N0∑
j=0

⟨SN0−j
α,α SN0−j∗

α,α x, x⟩ = τ2
N0∑
j=0

∥SN0−j
α,α x∥2.

If ⟨LN0,τx, x⟩ = 0, then Sj
α,αx = 0 for all 0 ≤ j ≤ N0. By (2.12) we have

0 = Sj
α,αx = kατ (j)x+ τA(kατ ⋆ Sα,β)

jx = kατ (j)x, 0 ≤ j ≤ N0,

which implies that x = 0. We conclude that ⟨LN0,τx, x⟩ > 0, for all x ̸= 0. By Proposition 4.22, the system
(3.26) is approximately controllable, and therefore λR(λ, LN0,τ ) → 0 as λ → 0+ in the strong operator
topology. This means that the assumption (H4) holds true.

By Theorem 4.27, the system (5.56) is approximately controllable on [0, N0]N0 .

5.1. Conclusions. In this paper we introduced a method based on resolvent sequences generated by a
closed linear operator A to study the approximate controllability of an abstract fractional discrete system
of order 1 < α < 2. The main results extend some previously obtained in the finite dimensional case, and
the method used here shows that it is possible to use these sequences of linear operators similarly to the
continuous case, which provides an interesting tool that could be used for the study of the controllability
of other discrete infinite dimensional systems.

In future, one can study the connections between the approximate controllability of a discrete system
and its continuous counterpart.
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