ASYMPTOTIC BEHAVIOR OF THE CONTINUOUS AND DISCRETE SOLUTIONS
TO A MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATION

RODRIGO PONCE

ABSTRACT. In this paper we study the existence and asymptotic behavior of the solution u(t) to the
multi-term fractional differential equation

(#)  Ofu(t) + poy u(t) = Au(t) + f(t), t>0,
where 1 < 8 < a <2, u>0, Ais aclosed and linear operator defined in a Banach space X, and for
n > 0, 8/ u(t) is the Caputo fractional derivative of .

To this end, we introduce a family of linear operators generated by A, we establish conditions for A
to be the generator of such family, and investigate its asymptotic behavior to study the behavior of u
as t tends to infinity.

Furthermore, we analyze a discrete version of (x) and introduce a sequence of linear operators gen-
erated by A to explore its connection with the continuous solution u(t) and the discrete solution u™ of
this equation. Finally, we derive an error estimate for ||u(tn) — u™|| and provide examples to illustrate
our results.

1. INTRODUCTION

Consider a rigid plate of mass m and area S. Assume that the plate is immersed in a newtonian fluid
of infinite extend and suppose that it is connected to a fixed point by a massless spring of stiffness o. If
p and v denote, respectively, the fluid density and viscosity, then the displacement wu(t) of the plate at
time t, obeys the Bagley-Torvik equation

(1.1) ma (£) + 25VpdZ ult) + oult) = 0,

subject to initial conditions u(0) = ug and u'(0) = w;. See for instance [35]. Here, a,?u denotes the
Caputo fractional derivative of order 2 of u (see [28]). The existence of exact and numerical solutions to
the scalar multi-term equation (1.1) has been extensively studied in recent years. For instance, [3, 4, 6, 9,
36, 37, 38] investigate numerical methods for the Bagley-Torvik equation using various approaches, while
[2, 7, 19, 26, 31, 32, 39] focus on the stability and numerical solutions of multi-term fractional differential
equations with arbitrary fractional orders.

In a more general context, this equation can be written in an abstract form as

ou(t) + udfult) = Ault)+ f(t), >0,
(1.2) ugog = o,
' (0) = w,

where 1 < 8 < a <2, u>0, fis a given function, A is a closed linear operator defined in a Banach
space X, ug,u1 € X, and, 05, 8,55 are the Caputo fractional derivatives of order a and f3, respectively.
The existence of mild solutions to abstract multi-term fractional differential equations in the form of
(1.2) represents a subject of increasing interest in the last years and the typical method to find these
solutions consists in the construction of a strongly continuous family of operators whose properties are
analogous to the Cy-semigroups of operators. See for instance [1, 17, 21, 34, 39] and references therein.
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In this work, we investigate the existence of solutions to the abstract multi-term equation (1.2). Our
approach is based on the theory of fractional resolvent families, which enables the representation of the
solution to (1.2) as a variation-of-constants formula involving these resolvent families. More concretely,
we show that the mild solution to (1.2) is given by

u(t) = Sop,u(t)u0+1(ga—p*Sa,8,u) (E)u0+(91%Sa,6,u) (D)1 +1(ga—pt1%5a,8,u) () u1+(ga—1%Sa,5,u% f) (1),
where {Su.5,.(t)} >0 is a strongly continuous family whose Laplace transform verifies S, 5., (\)z =
AT AY 4 pXP — A)~lz for all 2 € X and A € C with A* + pA® € p(A) and for n > 0 the function g, is
defined by g, (t) := %7 t > 0. See Definition 2.1 below.

Moreover, we give a discretization in time to equation (1.2) based on a sequence of linear operators

generated by A and the backward Euler convolution method for 7 > 0 (see for instance [12, 13, 14, 24, 25]),
to study the existence of solutions to the abstract discrete multi-term equation

(1.3) VU™ + poVPiu" = Au" + 7,

for all n € Ny, under the initial conditions u® = ug,u' = u;. Here, ¢ V*u™ represents an approximation

of the Caputo fractional derivative 0fu(t) at time t = 7n (where 7 > 0 is the step size) which is defined
by

uwl —2u T w2

2 )

T

cVou" = Zkgf‘l(n - j)(
j=2

t j ., : oo - . Fn—1 1
where, for p7(t) :=e" 7 (%)] }j!, u? is defined by w’ = [™ p7 (t)u(t)dt, and k](j) := Wm for all
j € Ny and n > 0. It is a well-known fact that «™ approximates the value u(t,) where ¢,, := n7, and the

solution to (1.3) can be written again as a variation-of-parameters formula as (see Theorem 3.17 below)
u" =S5 5 U0 +ur (kS P xS 5.) "o+ T (kL% Sa p.0) s +pr (kS P58y 5 ) ur + 72 (kS %S0 5,u% )",

for all n > 2, where S 5 is defined as

n = / (1) S p (D),

for all x € X, and for n > 0,

(K> o) = Y K0 = )85 5
j=0

Finally, we study the we study the difference ||u(¢,) — u™||, where u is the solution to (1.2) and u™ solves
the discrete equation (1.3) and we show that, given a suitable conditions on the parameters a, 8 and p,
there exists a constant C'= C(T') > 0 (independent of the solution, the data and the step size) such that,
for 0 < t,, < T, there holds

lu(tn) = u"|| < Crtpe=t ([ A%uol| + | A% ]| + [| A1),

where 0 < € < 1 satisfies Be < 1 and wg,uq and f(t) belong to the domain of A°.

The paper is organized as follows. In Section 2 we give preliminaries on resolvent families and sequences.
Section 3 is devoted to the existence of solutions to the discrete multi-term equation (1.3). Here, given a
time step size 7 > 0, we study the connection between the continuous and the discrete resolvent families
{Sa,p,u(t)}t>0 and {S&L,ﬁ,u}”GN’ respectively, as well as, its consequences on the existence of solutions to
(1.3). In Section 4 we study error estimates of the continuous and discrete solution, that is, we study the
norm difference ||u(t,)—u"||. Additionally, in Section 5 we give some examples to illustrate the theoretical
results. Finally, Section 6 corresponds to an Appendix that summarizes the main properties of resolvent
families.



MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATION VIA RESOLVENT FAMILIES AND SEQUENCES 3

2. RESOLVENT FAMILIES, MILD SOLUTIONS AND FRACTIONAL CALCULUS.

For a Banach space X = (X, |- ||), B(X) denotes the Banach space of all bounded and linear operators
from X into X. Given a closed linear operator A defined on X, its resolvent set is denoted by p(A), the
resolvent operator is defined by R(\, A) = (A\—A)~! for all A € p(A), and o(A) defines the spectrum of A.
A family of operators {S(t)}+>0 C B(X) is called exponentially bounded if there exist real numbers M > 0
and w € R such that ||S(¢)]| < Me“?, for any t > 0 We observe that if {S(¢)}>0 C B(X) is exponentially
bounded, then the Laplace transform of S(t), S(A\)z := [;° e S (t)zdt, exists for all ReA > w.
Definition 2.1. Let > 0, and 1 < f < o < 2 be given. Let A be a closed linear operator defined in
a Banach space X. The operator A is called the generator of an («, 3, u)-resolvent family if there exist
w > 0 and a strongly continuous and exponentially bounded function Sy, : Ry — B(X) such that
{A% 4+ p)\? : Red > w} C p(A) and

oo
AT N — A) e = / e S, 5 u(t)zdt, for all Rel >w,z € X.
0

In this case, {Sa,p,.(t)} is called the (o, B, p)-resolvent family generated by A.
Let a and b defined, respectively, by

a(t) ::/0 Go1(t — 8)b(s)ds, b(t) := Eo_p1(—ut* "),

where, for v>0,g(t) := %, and E,; denotes the Mittag-Lefler function. Then, a(\) = W’
b(\) = /\a+ )\B for all Re(A) > 0, and {Sq,g,.(t)} corresponds to an (a,b)-regularized families generated
by A, see [20] and from [20, Lemma 2.2 and Proposition 2.5], it has the following properties.

Proposition 2.2. Let ;1 >0, and 1 < < o < 2 be given. Let {Sap,.(t)}e>0 be the (o, B, p)-resolvent
family generated by A. Then,

(1) Sa,u(0) =1, where I denotes the identity operator in X.
(2) For allx € D(A) and t > 0 we have Sq g, (t)x € D(A) and ASy .. (t)x = Sa,p,.(t)Ax.
(3) Forxz € X andt > 0 we have fot a(t — $)Sa,p,u(s)xds € D(A) and

t
Supn(t) = b(t)r + A / alt = $)Supu(s)uds.
0
For further details on resolvent families, see Appendix in Section 6.

Definition 2.3. We say that a function u € C1(Ry, X) is a strong solution to equation (1.2) if u(t) €
D(A) for allt > 0 and satisfies (1.2).

If we take Laplace transform in (1.2) we obtain
(A% A = A)a(A) = (X ud Nug + (A2 + A" 2)ur + F(V),
for all Re(\) > 0. If A* + u\? € p(A), then
a(N) = XTEOY 4 A — A) g + NPT + P — A) g
X2 4 N = A) Ty 4 NPT 4 N — A) Ty 4+ (A N — AT,

where wug,u; € X. The uniqueness of the Laplace transform and Definition 2.1 imply that if A is the
generator of a resolvent family {Sq 5,.(t)}+>0, then a solution to Problem (1.2) is given by
(2.1)
u(t) = Sa,g,u(t)uo+1(ga—p*Sa,6,1) ()to+(g1%Sa,6,u) () ur+1(ga—p+1%5a,6,u) (D) t1+(ga—1#Sa,8,.% f) (£)-

As ug,u; merely belong to X, we can not prove (by Proposition 2.2) that u(¢) defined by (2.1) belongs
to D(A) for all ¢ > 0 to obtain a strong solution, and therefore we need to introduce the following notion
of solution.
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Definition 2.4. We say that a continuous function u : Ry — X is a mild solution to equation (1.2) if
u(t) satisfies (2.1) for allt > 0.

Now, consider f(t) = 0 for all ¢ > 0, and assume that o — 6 > 1. As Supu(0)z =z, Sap Nz =
XL 4 ) — Al and (A + p)® — AN + p)P — A)7le = 2, for all z € X, we obtain for any
X € C with A\* + uM? € p(A), that
~ . 1 - 1 .
S'apn(NE = A u(N)z =2 = N\ 4 pA = A) o = = 7 ASa ., (N7 = iy Sapn(N)e,

and therefore

(2.2) o p ()T = A(ga—1 % Sa ) ()T = (ga—p—1 % Sapu)(t)z, t>0,2€X.
Thus, if a mild solution u to equation (1.2) is differentiable on R, then by (2.2), it verifies u(0) = uy
and v/ (0) = uy, and therefore, in this case, a mild solution is a strong solution of (1.2).

Now, we recall the definition of Caputo fractional derivative. For a > 0, let m = [«] be the smallest
integer m greater than or equal to a. Let f : R+ — X be a C™-differentiable function. The Caputo
fractional derivative of order « is defined by 02 f fo I a (t — s)f™)(s)ds. It is well known that if
a=m €N, then 9" f = dtm, and that if 1 < a < 2, then aaf( ) = ACF(N) = A27LF(0) — A2 f7(0).
For more details on fractional calculus, we refer to [18]

The operator A : D(A) C X — X is called sectorial of angle 0 if there are constants w € R, M > 0
and 0 € (w/2,7) such that p(A) D Sp ' ={z € C:2z#w: |arg(z —w)| < 0} and

(z—A)7Y < for all z € Sp.

M
|z — wl
In this case, we write A € Sect(6,w, M). We may assume, without lost of generality, that w = 0. In fact,
if not so we can take the operator A — wI, which is also sectorial. In that case, we write A € Sect(8, M)
and we denote the sector Sp o as Sp. More details on sectorial operators can be found in [8, 15].

Let A be a closed operator whose resolvent set contains the real axis (—o00,0]. For 0 < ¢ < 1, X©
denotes the domain of the fractional power A°, that is X¢ := D(A®) endowed with the graph norm

llz]|e = ||[A%z||. Examples of such operators are sectorial operators with w > 0. It is a well known fact
that if 0 < e < 1, and € D(A), then there exists a constant k = k. > 0 such that (see [27])
(2.3) 1A%z < wll Az ]l .

The set of non-negative integer numbers is denoted by Ny and the non-negative real numbers by Ry

Take 7 > 0 fixed and n € Ny. We define the function p7 by p7(t) := e * (£)" L. We notice that

pn(t) >0 forall t >0, n € Ny, and [} p7,(t)dt = 1, for all n € No.
Given a bounded and locally integrable functlon U R(J{ — X, we define the sequence (u"),, by

(2.4) umémﬁgm@a,neN@

The vector space of all vector-valued functions v : Rf — X is denoted by F(R{; X). The backward
Euler operator V, : F(R$;X) — F(RF; X) is defined by V,o" := vn_:nfl, n € N. For m > 2,
VT F(RE; X) — F(RE; X) is defined recursively as

(V)" := VYV, 0)", n>m,

where V1 =V, and VY is the identity operator.
In order to define the fractional difference operators, we introduce the sequence (see [22])

wmy=A T (D)ga(t)dt, neNoa> 0.

™n!

a—1
T _L(adn) fo1 any n € Ny, and a > 0.

From definition, it follows that k% (n) = SN CINCESS)
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Definition 2.5. [5, 29] Let a > 0. Give a vector-valued sequence v € F(R; X), the a'"—fractional sum
of v defined by (V_*v)" *TZ] 0 k%(n—j)v?, n € Ny.

Definition 2.6. [5, 29] Let o € Ry \ Ny. The Caputo fractional backward difference operator of order «,
Ve F(Ry; X) = F(Ry; X)), is defined by (¢ V)™ = V;(mia)(vmv)n, n €N, wherem—1 < a < m.

In this definition, if « E Np, then V¢ is defined as the backward difference operator V¢, and we
adopt the convention Z —ov? =0, for all k € N (see [14, Chapter 1, Section 1.5]).
The following result can be obtained similarly to [29, Theorem 2. 7] and relates the Caputo fractional

derivative and the Caputo fractional backward difference operator.

T

Theorem 2.7. Let 1 < a < 2. If u : [0,00) = X is a twice differentiable and bounded function, then
fo ol (0)0fu(t)dt = ¢ V*u™, for all m > 2, where (u™),, defines the sequence (2.4).

Additionally, the next Lemma gives an expression for the Z-transform to the Caputo fractional back-
ward difference operator, which is an analogous result for the Laplace transform of the Caputo fractional
derivative. It proofs follows similarly to [5, Theorem 3.12].

Lemma 2.8. Let 1 < a < 2. Let u: [0,00) = X be a twice differentiable and bounded function. Define
(u™)y, by the sequence (2.4). If w™ := cV*u™, n € N, then

(z) = Tia (,221)&&(2) _ Tia (2‘: 1>a1u(0) - Talfl (Zj)wu’(()).

For a given family of operators {S(t)};>0 C B(X), we define the sequence S"z := [ p7,(¢)S(t)zdt,
for any n € Np,z € X. For a continuous and bounded function ¢ : Ry — C we also define ¢" :=
Io~ pr(t)e(t)dt, n € Ny, and the discrete convolution ¢ x S as (cx S)" := > _ " *5*% n € Ny.

The following results will be useful to prove the existence of solutions to (1.3).

Theorem 2.9. [29] Let ¢ : Ry — C be Laplace transformable such that é(1/7) exists, and let {S(t)}+>0 C

B(X) be strongly continuous and Laplace transformable such that S(1/7) exists. Then, for all x € X,
I pn () (e S)(t)adt = T(c* S)"z,n € Ny.

Proposition 2.10. Let o > 0. Let {S( V>0 C B(X) be strongly continuous and Laplace transformable
such that S(1/7) exists. Then, I~ P (t)(ga * S) (t)zdt = TZ] 0 k2 (n—j)Siz, for allz € X and n € Ny.

In particular, we have that for any «, 8 > 0,
(2.5) ket (n —TZka n—HE2G) =Tk * k2", neNg.

By s(Np, X), we denote the vector space consisting of all sequences s : Ny — X. Given a vector-
valued sequence s € s(Np, X), its Z-transform, §, is defined by §(z) := Z;io 2795(j), where 2z € C.
The convergence of this series holds for |z| > R, where R is large enough, and if s1,s2 € s(Np, X) and
$1(z) = $2(z) for all |z] > R for some R > 0, then s1(j) = s2(j) for all j =0,1, ...

Definition 2.11. Let 4 > 0, and 1 < 8 < o < 2 be given. The closed linear operator A is called the
generator of the (o, B3, j1)-resolvent sequence {Sy 5 ,}nen, C B(X) if it satisfies the following conditions

(1) St g% € D(A) for allz € X and AS} = Sy 5., AT for all x € D(A), and n € Ny.

(2) For each x € X and n € Ny,

aBu

n
z=0"s+71A(a* Sa ) x="0"s+ TAZCL" ist B
=0

where a™ —TZJ o kg™ m = )Y and V=305 k l+1(])(_l~‘)l-

(26) Sg,ﬁ,u
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Remark 2.12. Let b(t) := Eo_p1(—ut*?) and a(t) := (ga—1 * b)(t). By [16, Formula 11.15] and Propo-
sition 2.10, we have

bj:/ Zka ALY (=p)t and o :/ p;(t)a(t)dt:TZkffl(mf
0 1=0 0 =0

Proposition 2.13. Let {Sgﬁ#}neNo C B(X) be a discrete (o, B, p)-resolvent sequence generated by A.
Then its Z-transform satisfies

-1
- 1 /2—1\*' (1 /2-1\° 1 /2-1\"
Sa,ﬁ,#(z)x—ﬂ< . ) <T°‘( . ) +/L7_B( p, > A> z, ze€X, |z[>1

Proof. Let x € X and |z| > 1. Taking Z-transform in (2.6), we obtain

( Nl _A) Sapu(z)z = EN(Z) .

Ta(z) Ta(z)

As A is a closed operator, by (1) in Definition 2.11, we deduce that 1/7a(z) € p(A) and

(2.7) Sapu(2)z = @ <~1 - A> - .

Ta(z) \7a(z)

Let b(t) and a(t) as in Remark 2.12. By [11, Proposition 2.1], b(z) = %IA)(ZT_;
b(A) = X*1(A* 4 pAP) = (see for instance [16]), we obtain

o= () (R () s (2))

Finally, by Proposition 2.10, a® = 7(k%~! % b)", and thus

ot (4 (5 (7))

and the result follows from (2.7). O

). Additionally, as

From Remark 2.12 we have the following result.

Proposition 2.14. Let p > 0, and 1 < 8 < a < 2 be given. Assume that A is the generator of an
(o, B, n)-resolvent family {Sa.5,.(t)}i>0. Then, A generates the (o, 3, t)-resolvent sequence {S;Lﬁy#}neNO

given by St 5 = [5° () Sa. 5. (t)dt.

3. CONSTRUCTION OF THE METHOD AND EXISTENCE OF SOLUTIONS.
Consider the problem
(3.1) V™ + o VP = A" " n>2.
where A is a sectorial operator and (f™),en, is a given sequence.

Since by definition, cV*" = ¢V@v! =0, for any n > 2, we get

cVa" =171 Z E27%(n — §)(V20)! 4 772" — 20" 40772,
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and, the same identity holds for 8 instead «. Then, (3.1) is equivalent to
(17477 — A =217 7P — (77 P2

(32) R )~ K TR
j=2

Consequently, to compute v™ for n > 2, it is necessary to know v~ 1, v"~2 ... o', 10, To achieve this, we

need to solve the equation (3.2) and we may define v° and v! as u(0) and u/(0), respectively (or their
respective available approximations). Given that A is a sectorial operator, we can select a sufficiently
small step size 7 to ensure the invertibility of (77 + 778 — A).
We conclude that if A is a sectorial operator and max{w,0} < 7% 4+ 777 then the solution (v"),en,
to (3.1) subject to the initial conditions v* = uy and v! = u; is given by
ot =2(r7 Y+ 7_5)(7_0‘ +78— A7t (rme 7_5)(7'_0‘ + 78— A"y 2
n—1
(33) =1 S 2 n— ) — K2 (n— (7 — AT+ (r P - A, s,
j=2
Summarizing, we have the following result.

Proposition 3.15. Let A € Sect(6,w, M) in a Banach space X with max{w,0} < 7-%+ 7175, Then, the
solution (V™)nen, to problem (3.1) is given by the sequence (3.3).

Now, assume for the moment that u : [0,00) — X is a twice differentiable and bounded function.
Suppose that A is the generator of an («, 8, p)-resolvent family {S,. 3,.,(t) }t>0-

Multiplying the equation (1.2) by p7(¢t) and integrating over [0,00) we obtain, by Theorem 2.7, the
discrete multi-term equation

(3.4) oVou + 1oVl = Au™ + f, n > 2,

where u™ = [ p7 (t)u(t)dt and f" = [ o7, (t) f(t)dt.
Take u" := up and u' := u;. Proceeding as above, we obtain that (u"),en verifies the scheme

(741 P — A =2 P — (77 P2
n—1
(3.5) — T YR (= ) = k2P (= )V + £
=2

We will now represent the solution to (3.5) using a variation-of-parameters formula involving the
resolvent family {Sq g, (t)}+>0. Given the equivalence of (3.5) and (3.4), we apply the Z-transform to
(3.4). Multiplying (3.4) by z2~" (where |z| > 1) and summing over Ny yields, according to Lemma 2.8,
that

(Tla <Z;1)a+“:ﬁ <Z;1>ﬁ—A>ﬂ(z)=<Tla <Z;1>a1+“:ﬁ (Z;1)61>u(0)+
(Tj_l () s (1)6) W(0) + 7).

As A generates the sequence {527[37”}”61\10 (see Proposition 2.14), by Proposition 2.13, we deduce that

iW(2) =Sa.,.(2)u(0) + p7kS P (2) S0, 5. (2)w(0) + T (2) Sar g, (2)0 (0) + pr k™ P11 (2) Sa g, (2)u/ (0)+
72k N(2)Sa 5.0 (2) F(2).
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Summarizing, we have proven the following result.

Proposition 3.16. Let 7 > 0. Let A be the generator of a bounded (v, 8, pt)-resolvent family {Sa 8, (t) b>o0-
If ug,u; € X and f is bounded, then the fractional multi-term difference equation (3.4) has a unique so-
lution given by

u" =S5 5 U0 +ur (kS P %S0 5.) o+ T (kL% Sa p.0) s +pr (kS P %S, 5 ) ur + 72 (kS % Sa5,u% )",
for alln > 2, and u® = u(0), u* = u'(0), where Seppu = INVAGEMGLS

0 1

Now, given that v* = u = ug and v' = u' = wy, the sequences in (3.2) and (3.5) are identical.
Consequently, without imposing any regularity on the sequence (v™),,, we have the following result.

Theorem 3.17. Let 7 > 0. Let A be the generator of an (a, B, u)-resolvent sequence {Sg’g,u}neNo- If
ug,u1 € X and (f™)nen, 1S a given sequence, then the fractional multi-term difference equation (3.1) has
a unique solution given by

(3.6)

V" =Sy 5 ,U0 (k2P %S0 5.) 0 +T (kL% Sa ) ur +ur (kS P %S0 5 ) ur + 72K %S0 5% )™

for alln > 2, and v° = ug, v' = uo.

From Proposition A.2, Proposition 2.14, and Theorem 3.17, we have the following Corollary.

Corollary 3.18. Let 4> 0,1 < f < a <2 and A € Sect(0, M) where § = <. If a — 3 <1, ug,u; € X
and (f™) is a given sequence, then the fractional multi-term difference equation (3.1) has a unique solution
given by (3.6), where {Sg,ﬂ,u}”GNO is the (o, B, u)-resolvent sequence generated by A.

4. CONVERGENCE AND ERROR ESTIMATES FOR SECTORIAL OPERATORS

In general, each term of the sequence v™ approximates the value of the function v at t,,, where t,, = n1
(for 7 > 0). In this section, we study the norm difference ||u(t,) — u™||, where u is the mild solution to
Problem (1.2) and u™ solves the discrete difference equation (3.4).

For a closed operator A € Sec(¢, M) and t > 0, we consider the path I' := I'; defined as: For § < 6 <,
we take ¢ such that %gzb < Fa < ¢ < 0. Next, we define I'; (see Figure 1) as the union I'} UT?, where

1. . 1
rl.= {te“b/a:qb<¢<¢} and T?:= {reil¢/a:t§r}.

FiGure 1. Plot of path T;.

The next result will be useful to prove the main theorem in this section. For a similar result see [29].
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Lemma 4.19. Let A € Sec(f, M) and T be the complex path defined above. If > 0, then fF
—1 R ¢ cos (/e
Cot*=1 for allt > 0, where C, := <2¢ f7¢e /) dopy + —Cos(¢/a)) )

|dz\ <

R

If A € Sec(f, M), then 2® + uz® = h(z) € p(A) (see Proposition A.2), and therefore, the inversion
formula of the Laplace transform implies that

1
(4.1) Sus(t) = —/e”zo‘ Lh(z) — A)ldz, >0,
2mi
where I' :=I'; is the path defined in Lemma 4.19.
Theorem 4.20. Let p >0 and 1 < < a <2 and A € Sect(0, M) where 0 = <. Suppose that there

exist 0 < g1 < 1 such that o — B < e1 and 1+ e1 < a. If there exists K > 0 such that || f(t)|| < Kg-(t)
for allt > 0, where 0 < v < 1, then the mild solution u to (1.2) satisfies ||u(t)|| — 0 as t — oo.

Proof. We know that the mild solution to (1.2) is given by

u(t) = Sa,g,u(t)uot(ga—p*Sa,6,u) () uo+(g1%Sa,8,u) () ur+1(ga—p+1%Sa,8,u) (H)u1+(ga—1%Sa,8,,% ) (t).
By Theorem A.3 we have ||Sq,g,,(t)uol| — 0 as t — co. Let I' :=I'; be the path defined in Lemma 4.19.
Now, as ja—p(2) = 1/2%7# and A € Sec(f, M), we have
_ _ M le®t|
B %S, (h(z) — A)7H||dz| < — dz|.
0o Sna 01 < 5 [ AL a0 - aiast < 32 [ T s
Asl—a<0and f—a+1> 0, we have

there exists Ml > 0 such that
the Lemma 4.19 implies that

— 0 as |z| — 0 and |z| — oo. Therefore,

1
|z4pzP—atl—wzl-o|

< M; for all z such that h(z) € p(A). Since a — 8 < 1,

1
|ztpzP—atl—wzl-o|

MMl |6Zt‘ CaMMl —B—
_g* S )] < dz| < Pl 50 t — oo.
||(gOL B * 0‘7/31#)( )H — o r |Z|a—ﬁ| Z| - o2 as o0
Similarly,
I e
* S, :
[1(g1 * Sa,p,u)( |— o |z|1 €1 |za+u2f3—w|‘ dz|
a—l—e
Since v — 8 < €1 and 1 + g7 < o we have ‘zlah_uzg_lw‘ ‘ZHEl+Hzﬁ—a+}+sl_w21+sl,a| —0as|z|] =0
1

and |z| — oco. Thus, there exists My > 0 such that
h(z) € p(A). By Lemma 4.19 we obtain

[TFE L 2P e e ST A < M, for all z with

CoMM, .
”(91 * Sa,ﬁ,u)(t)” < TQt ' -0 as t— oo.
Analogously, we obtain
CoMM, , 45
||(ga75+1 * Sa,ﬂ,u)(t)” < Tlt B=er — 0 as t — 00.

Finally, since || f(t)|| < Kg,(t) for any ¢t > 0, we have ||(ga/_1\*f)(z)H < II"% for any Re(z) > 0. Then

1(ga—1 % Sapux F) D) < */ le’”lllsaw( i (ga—1 % £)(2)]Id2]

<o [ ZL e - 4
MK [ |

ezt| 1

2 Jp |27 [z 4 pf - wl
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As «, f > 0 we have
1\2/3 > 0 such that

— 0 as |z| — oo and — ﬁ as |z| — 0. Therefore, there exists

1
Izaﬂwﬁ wl [z +p2f —w]
m < M. By Lemma 4.19 we conclude that
CC“MM?’Ktv—l

—0 as t— oo.
2

1(ga—1 % Sap. % )] <
]

For a given 0 < € < 1, the space of all continuous function f : [0,00) — D(A®) endowed with the norm
1flle = sup,>o [1F(8)]le = supy>o [[A°f ()] will be denoted by C([0,00), D(A%)).

Theorem 4.21. Let 1 >0 and 1 < 8 < a <2 and A € Sect(6, M) where § = 5. Let 0 < & < 1 such
that 1 < Ble +1) < @ and 0 < Be < 1. Suppose that f € C([0,00), D(A®)). Let I' be the complex path
defined above. If ug,u1 € D(A?), then for each T > 0 there exists a constant C' = C(T') > 0 (independent
of the solution, the data and the step size) such that, for 0 < t, < T, there holds

lu = wu(ta)l| < TR~ (Jluolle + llualle + 1 £1) -

Proof. By Proposition A.2, the operator A € Sec(d, M) generates an (o, §)-resolvent family {S, 5(¢)}i>0-
The solution to (1.2) is given by

u(t) = Sa,B,;L(t)uO'f'/fL(ga—,B*Sa,,@,u)(t)u0+(gl*Sa,B,u)(t)ul+M(ga—5+1*5a,ﬁ,u)(t)u1+(ga—1*Sa,6,,u*f)(t)7
and by Theorem 3.17, the solution to the equation (3.4) is given by
u" = S% 5 0+ U7 (Jampr Sapp) "o +T(91 % Sa,p,0) "t + 1T (Jampi1 * Sap) "1 + T2 (Gam1 % Sau* )"
where Sy 5 = 1y P (t)Sa,p,u(t)dt. Fix n € N such that 0 < t,, < T, where t,, := 7n. Then, we have
lu® —ulta)ll < N(Saputn) = Sa g uoll + ll((9a—p * Sapu)(tn) — (kS ™7 % Sa ) uol|
(91 * Sap.)(tn) = 7(k7 % Sap,0)" Jur
Hll((ga—pr1 * Sap) (tn) = T(REH 5 Sa ) un|
+||(ga—1 ES Soc,,@,u * f)(tn) — 7'2(]60(71 * S o, B, *f)nH = Il + Ig + Ig —+ I4 + 15.

Now, we estimate each term I; for j = 1,2,...,5. Since f t)dt = 1, we can write

(Sa,u(tn) = 58 5,10 = /0 Pr()((Sap,0(tn) = Sap,u(t))uodt,

and therefore I; < [ o7 (£)[|(Sa,8,u(t) — Sa,p.u(tn))uolldt. Now, by (4.1) we can write

B 1 (ezt _ BZt")
(Sa’ﬁ’u(t) - Sa,ﬁ,u(tn))uo = Tm . f

where h(z) = 2% + pz”. Since A(h(z) — A)~' = A'=4(h(z) — A)~* A% we have
(4.2) h(z)(h(z) — At = A(h(z) — A) "+ T = AV (h(z) — A) 1A+ 1.

Moreover, we can write

2%(h(2) — A) tugdz,

(4.3) 2*(h(2)—A)"" = h(2)(h(z)—A) " —pzP (h(z)—A) 7" = h(Z)(h(Z)—A)’l—uT
and therefore

1 ezt _ GZt" Z,@
(Saplt) = Sapplta)ue = — [ =) (1 _ ﬂ> o
r z h(z
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. L (eztieztn) L 2B N (ezt,eztn) 1 . . .
Since p(z) := *—— and ¢(z) := up(z)m = p— - Za=r7; have a unique removable singularity

z

at z = 0 and t > t,, we obtain that they can be analytically extended to the region enclosed by the
zt ztp
path I'f := T/ where I'? is the path given in Figure 2, and therefore 5= [.» (=) 0dz = 0. Since

21 z
= [r @uodz =limg—o0 55 Jrr @Zﬂuodz, we obtain 5= [, (eztﬂuodz = 0. Similar result
holds for ¢(z) and therefore
1 zt _ 2ty zt _ ,ztn B
L et e B[ o,
2 Jp z 2 Jr z h(z)

TR

FIGURE 2. Plot of path I'Z.

On the other hand, since A is a sectorial operator, we get by (2.3)
[A%]
h(2)]°

(4.4) A2 (h(z) — A) TP A%z|| < k(M +1)
for all x € D(A®). Therefore,

k(M +1) (/ le*t —e*tn] 1 / le*t —e*tn|  plz|P )
Sa.8,u(t)=Sa.p.u(tn))uol < dz| + dz| | ||A%uo||.
(S =St ol < SEEI ([IE gy [T D i) s

——L— . Now, we write 2*7# = rei®. If Re(2*~#) > 0, then —=5— < 2. Now,
h(z) zo=P4p [29=Ftul =
if Re(27#) < 0, then cos(¢) < 0 and |ZQJ3+M < r2+2u:$5(¢)+uz =: f(r). An easy computation shows

that lim,_,o f(r) = i, lim, o0 f(r) = 0, and that f(r) has a maximum at 7o := —u 4 2v/2p/1 — cos(¢).

Thus Y Y
2v2 1 22
< = =: h ,
f('f') = f('rO) L \/1 — COS(d))(\/l — COS((b) _ 2\/5)2 m 1(¢)
for all » > 0. Since cos(¢) < 0 we may assume that 7/2 < ¢ < m, which implies that hi(¢) < 1/2 and

therefore f(r) < % We conclude that < max {%, %} = %, which implies that

We notice that —— = ziﬁ

1

|22~ F+p

1 < 2

h(z)] ~

for all Rez > 0. Moreover, by the generalized mean value theorem, there exist tg,t; with 0 < ¢, < tp <
t1 < t such that

4.5 )
(4.5) PEL

|eZt - eZtn| toz t1z
(46) S () (e ).
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and by Lemma 4.19 and (4.5) we obtain

ezt_e 1 |et0z _|_|et1z 2 € o o
/l il = ) =t [ = (7) - tcas i,

1
\GZt e pl2)’ |€t“Z|+|€tlz| 2\ Be—1 ,Be—1
/ B h(z)|+ dz| <p | — (t=tn) T e |dz] < p ,u (t—=tn)Calty” +t1~ ).

Therefore, we have that

1(Sa8,(t) = Sa,p,u(tn)Juoll <

3k(M +1)

2 : E— E— I
i (2) - el + A%l

Since 0 < Be < 1 and t,, < ty < t; we obtain t'fsfl < tg%l < t8=1 and thus

3(M +1) /2\° B _
/(S (8) — et o] < 2L (M) (— £)CatZ [ Ao = Dyt — 1,)125 | Aup)|.
Since [, pf,(t)dt =1 for all n € N, we have

(4.7) / Pr(t)(t — t,)dt = / pr(Otdt —ty = tpy1 —ty =7,
0 0

and we conclude that

/ F ()11 (t) — S () ol dt < Dyt A=) / Pr(E)(E — ta)dt < Dyrt25 | Afug)|,
0

for all n € N, and thus

™

Il § Dthggil ||AE’U,0||

To estimate I we notice that, by Theorem 2.9, I5 can be written as

(3) o= | [ P O00- 5 S00(00) = (00 0,0 O]
Since (ga—p * Sap0)(2) = =25 Sa pu(z) = LZh(z)(h(2) — A)~Y, for all Re(2) > 0, and by (4.2) and
(4.3) we can write (go— 5/*\50, pu)(z) =1 ZZ Al=¢(h(z)— A)~1 A5 4+ L 2 71~ By the inversion theorem for

the Laplace transform, we have

1 . —_
(Ga—p # Sapu) ()0 = 5— | €™ (gasp % Sap,u) (2)u0dz,
and therefore, for uy € D(A®), we have
1 (e#tn —e*t) 28 | _
(ga—p * Sa,p.u)(tn)to — (Ga—p * Sa,pu)(H)uo = o s f@fll “(h(z) — A)~" A%ugdz
1 (e#tn —e?t) 28
— 2 iod
2mi /F z h(z)uo :

The second integral in this last equality is equal to zero, because p(z) := ('=e™) and q(z) :=p(z)

z
have a unique removable singularity at z = 0. By the inequality (4.4) we have

k(M +1) [ |e#tn —e?t|  |z]? .
B e e e e

By Lemma 4.19 and (4.5)—(4.6) we have
et — | |2)” |et°Z| + Jeh?] 2\ pemt  pe-1
/F B ) |dz| < (t—ty,) T |dz| < . (t—tn)Calty"  +t7°77).
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Since fe —1 < 0 and 0 < t,, < to < t; we have t5°~ " < 071 < t8=1 and we get

(M +1) (2\7 ~
0-5 % S )(00) = (o S )Mol < S (2) 7 oo el
Therefore, by (4.7) and (4.8) we have
IQ S DthﬁEi]'”AEUOH,

M e+1
MH(ﬂJrl) (%) o
Next, we estimate I3. Since

where Dq :=

[(91 % S8 (tn) = 7(k7 % Sap,u)" (8)]u1 = /OOO Pr)[(g1 % Sap,1) (tn) = (91 % S p,) (D] dt,

and (¢ */S?ﬁu)(z) = %5’047[9#(2) = %Zha(;)l h(z)(h(z) — A)~!, for all Re(z) > 0, we have by (4.2) that
1 (eztn _ ezt) Za—l 1
) () — (g1 % S g.)(E N AVE(h(2) — A) T ATuyd
(1% Sas)ltn) = (1 Sap) Ol = 5o [T a2(0e) - ) s
1 (eztn _ ezt) Zoz—l
— d
27ri/p z h(z) tas
= J1+ Jo.
Since g(z) := (6”";62t) . Zha(;)l = (e;:;_ej) . za—lff-m has a unique removable singularity at z = 0, the

integral Js is equal to zero.
On the other hand, by (4.4), (4.5) and (4.6) we have

li(M + 1) |eztn _ ezt' |Z|o¢71
J < A® d
S Y P e
K(M+1) 2\ . ; 1 .

Since 1 < B(e+1) < @ and o > 1, we obtain 0 < 8(e + 1) —a+ 1 < 1, and the Lemma 4.19 implies that

k(M +1) /2\° _ .
|71 < % (u) Colt — tn)(tg(6+1) a _’_tf(s+1) ) A=y .

The condition 1 < (¢ + 1) < o implies that 7T < (fEF=a oy fEFD=e 114 thus
e+1
R R e Ve
m 7
k(M +1) 2\ . _
SO (2) 7 e e 4wl
because f — a + 1 > 0. By (4.7) we conclude that

L < / PO % S ) (En) — (91 % S ) () Jundl

™

M 1 9 e+1
I-i( + ) (> OaTﬁfajtthgeleAeulu

12
= Dthga_l ||AEU1 ||7

™

e+1
where Dj := £M+1) (%) C, TP+,

U
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Now, we estimate I,. Since (ga—pg+1 * Sa,8,1)(2) = Z(,_%S'aﬁ’#(z) = 2P72(h(2)—A)7L, for all Re(z) >

0, by Theorem 2.9 we have
Iy < u/ Pr()I[(ga—pt1 * Sap.u) (tn) = (Ja—pt1 * Sap,u) (£)]us[|dE.
0

By the inversion theorem for the Laplace transform and (4.2) we get

1 2ty _ ozt B—1
(e )z AYE(h(z) — A) Tt A%y dz

[(ga—,(i’-i-l * Sa,B,u)(tn) - (ga—ﬁ-i-l * Sa,ﬁ,u)(t)]ul = Py - > h(z)
1 2ty _ p2t\ B—1

— (e )z urdz.
2 Jp z h(z)

The inequalities (4.4), (4.5) and (4.6) imply that

(M+1 |62t _6zt| |Z|671
T G Al

|ezt _ ZtHz‘*B 1
2W/ oyl

k(M1 2\ Jezto + |e#t -
S;g;g@i%)i 4 1P e gz
2m Iz ro |zt

1 /2 1
(2 (t—tn)/(eZto e ) - [ [ d2].
= (2) [ (fes 1+ le) s

Il(9a—p+1 % Sap.u)(tn) = (Ja—pt1 * Sap.u) (D]ur ]| <

Since |lug|| < ||A%uy||, the Lemma 4.19 implies that

(M +1) 2\ e e e
Gn-511 % S0, = (-1 3 S, Ol < “EE (2) et 4 8917

1/2
+ - () (t — tn)Col|A%uq ||
™\ p

Moreover, since B¢ > 0 and tg < t; < t we get tge < % and tlﬁe < 72, which implies that

k(M +1) (2\H! e
-1 % S, )(0) = G-+ Sop O] < = (2) et

1/2 _
+ - (H) (t = tn)CollA%uy|].

Therefore,

Iy < u/o PrON[(ga—pt1 % Sop.u)(tn) = (Ga—pt1 * Sap,u) (D)]us || dt

M+1) /2\°H o 2 o0
W“>() Co [~ 0=t 4w+ 20 [T o - )| 4%
™ K 0 ™ 0

Now, an easy computation shows that for all n > 0

(4.9) /Ooo T ()¢t = n"r(n+n+ 1),

for all n € N, and therefore

/ ) pr(t)(t — ta)t"dt =
0

T+l 7N
L(n+n+2) - ST +n+1)tn = .
n! n!
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Now, ¢}l can be written as
7l
n!

T 'n+mn) 1
Dt 2) = 04+ Dt = 7y + D+t

(n+1)nn’

Since EEZTB <n ! forall 0 < n < 1and n €Ny (see for instance [10]), we have

1
e < T+ Dn+ )t~ = = 7(5+ 1)t (1+ %) < 7(n+1)%0.

for all n € N. If = S, then the hypothesis implies that ¢3¢ < 7(Be + 1)%t2° = 7t,(Be + 1)%t~1 <
7(Be + 1)2Tt2e=1. This last inequality and (4.7) imply that

M+1) /2\° 2
5, < MMAD )(> Coc® || A% || + = Cor|| A% |
™ I ™
M+1) /2\°! 2
< M+l (> Co(Be + 12Tt M| A%uy || + ZCo T P57t || Ay .
0 " ™

We conclude that
I4 S D47‘t§671 ||AE’U,1 ||,
. r(M+1) 2\ 9 2 1—
where the constant Dy is defined by Dy := | 5= (;) Co(Be+1)°T + 2C,T pe ) |
Finally, we estimate I5. By [23, Lemma 2.7] we can write

Is = H/O Pr(D)[(ga—1 % Sa,pu * [)(t) = (ga—1* Sa,p,u * f)(t")]dtH '

Moreover, we have

tn

(91 % Sa,p.u* ) () = (ga—1 % Sa,p.u* f)(tn) =/ [(ga—1* Sa,p.u)(t = 1) = (ga—1 * Sa,p.u) (tn — T)]f (r)dr

0

+ / (g1 * Sap)(t — 1) F(r)dr

=J1 + Jo.

In order to estimate J; we observe that (ga_@737ﬂ)(z) = ZQ%SA%&M(Z) = (h(z) — A)~1, for all
Re(z) > 0, which implies by (4.2) that

1 (ezt _ ezs)
2t Jp h(2)

1 zt _ ,zs
R Gitelow P
2ri Jp h(z)
for all x € D(A®) and t > s > 0. By (4.4) and (4.5) we obtain
k(M +1) [ |e* — e*5|

2 Jp [h(z)H

1 |ezt _ ezs'

+ - || A%z]||d=
] e KT

M+1) (2\ [ et —e* 1
R (2 " — ™ 1A% ldz
o \a) SR ppem

1 /2\ [ let —e| 1
— | — —_ Acx||ldz].
T oo <u>/ ER

(Ga—1 % Sa8,) ()T = (ga—1 % Sap,) ()2 A5 (h(z) — A) T Afadz

1(ga—1 % Sa,.u) ()2 = (ga—1 * Sa,p.u)(s)z]| [A%z]||d=]

IN
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The generalized mean value implies the existence of #y,¢; with 0 < s <ty < t; < t such that % <
(t — s) (le"*| + |e*#]) . Hence, by Lemma 4.19 we get

(M +1) [2\° . . .
(001 S0 07 = (g1 S, )] < S5 (2) 70— )02 4 002 )

1 —2 -2
+ Eca(t — )ty 2+ 1) 1A%.
Since 1 < B(e+1)<a,f>1,and 0 < s <ty < t; <t we obtain
M+1) (2\°
e (> Calt = 5)s7 D72 A%
™ u
2
+ Oy (t — s)sP72| A%z].
723

IN

1(ga—1 % Sa,u) ()2 = (ga—1* Sap,u)(5)2]

Replacing t by t — r and s by t,, — r we obtain

e+1 tn
SN (Y ot [t =

Al <
1

™

2o | "t = )24 )
e+1 tn
<D (YT ol [ =0+ Z =l [ =
2 nmw 0

Next, we notice that for v > 0, we have fo (t —r)7tdr = T(v)(g1 * 94)(t) = T(V)gy11(t) = %, and
therefore,

28 B(e+1)—1 Be—1 tn -1 B(1—¢)
t t t T
tn — )P 2qr = 2 <Tf__——n / tn — 1) 2dr = S — < the1,
/0 (b =) "Thern-1-" Be+n -1 J, (b — )7 dr B_1- -1 ™
Therefore,
R(M+1) (2\ Be—1 2 T8O-8)
S < BET 2 oot — )T 2Ot — the—1
ol < S () ot AT G + = Cale - )

By (4.7) we get

/0 pﬁ(t)/o (g1 # S ) (t =) = (g * S ps) (b — P () [drdt < Cor] fllt2,

where

M+1) 2\ T8 2, TP0-9)
05 = 7K( + ) () - + 7001 .
7 U Ble+1)—1 pumr © pg-1
Now, to estimate J, we notice that for ¢ > 0 and « € D(A®) we have as in (4.10) that
( %S Ytz = L/ ! AYE(h(2) — ATt A%adz + L/ e—na:dz
a1 * 2B 27 Jr h(2) 2mi Jp h(z)"

The inequalities (4.4)-(4.5) and Lemma 4.19 show that

M+1 le®t R 1 le*t]
(01 * S ) (D] < [ e e o [ el

MCQ <2> (€+1)*1||A5:z:\| + i <2> tﬁ*1||A5x||.
% 2m \ p

IN

2
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Therefore,

¢ k(M +1 2\ t _
o o I A

1 (2 K
— (= t—r)dr.
+35 (5) 171 [ 6=y rar
Now, we observe that

t t tn
/ (t —r)PErD—1gp = / (t —r)PEr—1gy — / (t —r)PEr—1qy,

tn 0 0
and

t
1
fop)flerD-tg _ L e
/0( ") "B+

for all ¢ > 0. Moreover, the function z — z? (e+1)-1 jg increasing and for t,, <t we obtain

¢ ‘.
/ (t _ 7«)5(6+1)—1dr — ﬁtﬁ(e—&-l) _ / (t _ T)ﬁ(8+1)_1d7“ <
0

tn

1
m(tﬁ(sﬂ) — ¢fe41)),

And, analogously

t
/ (t—r)’"tdr < l(tﬁ —th).
tn B

On other hand, by (4.9), [ p7(£)(t?E D — 2 yar = 2 r(n 4 B(e + 1) + 1) — 5T, and
rhet1) Fn+14+p(+1)-1)
— — Be+1)—1
dy = —— T+ 1+p(E+1) = 7 RO (n+1)(n+ (e +1))

<ttt ST Ble+ )T
for alln € N, because 0 < 8(e+1)—1 < 1 and Dlnrlen) o (n+1)""!foralln € Nand 0 < n < 1. Moreover,

T'(n+2)
the function x s zPETD =2 ig 4 decreasing function on [1, 00), and therefore tﬁgffl)_Q < tQ(EH)_Q

n € N. This implies that

tg(f;ﬂ)ﬂ _ (n+ 1)71553?1)72 < (n+ 1)7_t§(8+1)—2 < tg(a+1)—1 +Tt§(a+1)—2 < 2trﬂl(5+1)—17

for all

and d,, < tntn+1t§$fl)_2 +8(e+ l)thLSffl)_l < tn+1t5(6+1)_1 +28(e+ 1)#5(5*1)‘1, for all n € N. Since
0<t, <T and

t —t
by tPETD=1 B+ _ yBletD) ( n+1 n) — Bt
n

we obtain
/O°° P — 2 T )de < (1428(e+ 1) TP
Similarly, we can prove that
/OOO pr ()% — t8)dt < (1 +28) 7Pl

Therefore,

/ooopﬁ(ﬂ /tn|(ga—l*Sa7ﬂ,u)(t—7")f(7")||d7“dt < MM+l (2

e+1
2mB(e +1) n BiBe—1
2mBe+1) ° u) I£ll-(1+ 28(e +1))r TPt

1
+ (— S(1428)rTPA—=)gfe—1
<M5> 1f1le(1 +28)
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for all n € N, and we conclude that
1ol < G5l fllthe .

where

,_ KM +1) 2\ 1 (1-¢)
G = gernCe (2) a2 o+ (5 ) aeamrs,

That is,
Is < Ds|| f||loth= 1,

where Dj := C5 + Cf. Summarizing,
" = ulta)l| < (Dy + Da)rt8= | Aoug | + (Ds + Dyt || Ay ]| + Drtf= 1 f]L.,
and we conclude that the constant C' = C(T') defined by
C :=max{D1 + D2, D3 + Dy, D5}

satisfies
lu™ = u(ta)ll < CTtRe = (| Auol| + | A%ua || + 1| Flle),
and the proof is finished.

5. SOME EXAMPLES

Now, we illustrate the exact solution u(t) at ¢, to the fractional differential equation (1.2) and the
approximated solution u™ to the difference equation (3.4) given by Theorem 3.17 by applying the families

of operators {Sa,g,,.(t)}+>0 and {Sgﬁ’“}neNO .
Ezxample 5.22.

Suppose that A = pI for some p € R. Then, the Laplace transform of the family {S,. 3., (t) }+>0 satisfies

R /\a—l
Sa A)= —F——,
,B7N( ) )\a+ﬂ)\ﬂ7p
and, by [16, Formula 17.6], we obtain that
oo
a— 1 a
(5.1) Saput) = D_ (=i tOTVE G 550 (pt),
7=0

where, for p, g, > 0, E}, (2) is the generalized Mittag-Leffler type function defined by

oo

(r);#
E’ (z):= — zeC.
pa(?) ;)J!F(pJ‘FQ)

Here, (r); denotes the Pochhammer symbol defined by (r); = Fgf(f)] ),
Therefore, the solution u to

(5.2) Opult) + pdult) = pu(t) + f(t), >0,
with the initial conditions u(0) = ug,u:(0) = u; is given by
(5.3)

u(t) = Sa,p,u(t)u0+1(ga—p*Sa,8,u) (E)uo+(91%Sa,8,.) () U1+ 1 (ga—p+1%Sa,8,.) (E)U1 +(ga—1%Sa,8,. % f) (t),

where {S4 3,,(t) }+>0 is defined in (5.1).
On the other hand, by [16, Formula 17.6], it follows that for any v > 0,

o0

(5.4) (9 % Sapn) () = D (=)t DITTBITL (o), 20,
7=0
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By Proposition 2.10 we obtain
(045050 = [ P00 # S O = 730K = S5,
j=0
where -
S’i Bow /0 p;‘(t)sa,ﬁ,u (t)dt~
Using (5.1) and [33, Theorem 5.2], we obtain

J _ - (_u)r > 7%15 (a—=B)r+j pr+1 a _ o o r(k+T)' (a—B)r+ak+1/:\ k
Saﬁ# - Zj!7j+1 /0 e t JEa,(a )T+1(pt )d - ZZ( M) k! kT (j)p )
r=0 r=0 k=0
and, from the semigroup property (2.5), we deduce that
n
(55) (kl * Sa,ﬁ 12 Z k a B,p,
J:O
k J’» T o— T
= I3 Sy G e preki i e
r=0 k=0

By Theorem 3.17, the solution ™ to the discrete system

(56) CVO‘U" + ,U,Cvﬂun = Au" + fn,

subject to the initial conditions u® = ug, u! = w1, is given by
(5.7)

u" =S, #’Lbo-f-/.LT( “BxS, B u0+T(k *Se, g ) U1 +pr (kST A1, S, Bop) Ul +T (Ica %S, Bau* )",

for n > 2, where for any v > 0, (k) x Sa,5,,)" is given in (5.5).

Now, consider the interval [0, L], L > 0, and the time step size 7 = L/N. As the exact and approximated
solutions to (5.2) and (5.6) are expressed in terms of Mittag-Leffler functions (defined as infinite series
by (5.3) and (5.7)), the examples consider finite truncations of these series (M = 80 terms) for both
solutions.

Following [7, Section 5], in our first example, which corresponds to the Bagley-Torvik equation, we set
f(t)=00n[0,30] and « = 2,5 =3/2,u = 1/2,p = —1/2, with initial conditions u(0) = u;(0) = 1. From
(5.3) and (5.4) it follows that the solution u is given by

u(t) = Z(_N)]t(a_ i EJJF(L )j+1(Pt )+t /BEJ+(1 —B)j+a— ﬁ+1(:0t )+
j=0

J+1 a—B+1 pj+1 «
tE, (o 5)g+2(pt ) + pt B a—p)jta— sia(Pt) ]

In the next example, and following [39, Example 5.2], we take f(¢t) = cos(t) and o = 3/2,8 =
5/4,u = 0.1,p = —0.1. To find an explicit expression to u(t) in (5.3), we just need to determinate
(ga—1 * Sa,g,u * f)(t). To this end, we begin by expressing f(t) as the series f(t) = Z;io (&3,‘1 29, By
(5.1), we get

t
(tis) a—B)j+a—1pj+1 a
(ga—1 * Sa ,Bu*f ZZ /0 m s )i EJ7(Q B)]+a(p8 )ds.

q=0 j=0

Using [33, Theorem 2.4] we deduce that

t(t_s)61p21 ¥ « S+p2—1 Y «
(5.8) ; Ws B} . (ps%)ds =t E) st
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for any «, p1,p2,d > 0, which implies that

x 0 ] + k) tla=B)j+a+2q+ak .
S
(g1 # S ) QZO;”;) jk T(a—Bj+atak+2g+1)"
Now, to determinate (u™))_; we need to find (k&1 xS, 5, * f)". From Proposition 2.10 we have

(k2" x Sapux /)" =7 Z K= 5)(Sapp Y =7 Z kK2 (n = j) /O P; () (Sap,u * f)(E)dt
§=0

=0

and, by (5.1) and (5.8), we get

[SSINC)
(S * HE) = 3 S (1)U (—p)reeDr2esiprat L (pt),
q=0r=0

Multiplying this last equation by p7(¢) and integrating over [0, c0), we use [16, Formula 11.15] to obtain

- - - (r+k)! o— T « -
(S f E D (1)1 () S Rl R ak () ok
q= 01=0 o

And, by the semigroup property (2. ) and Proposition [23, Proposition 4], we conclude that
T2 (kST % Sapu % )" = (Ga1 % Sappux )

ZZ _ rlkl k( B)r+2q+1+ak+ (n)pk

Figure 3 presents a comparison of the exact solution u and the approximated solution (u™))_; to the
initial value problem defined by (5.2). The exact solution u, given by (5.3), is evaluated at discrete time
points t, = n7 for 1 < n < N, where 7 = L/N represents the time step. The approximated solution
(u™)N_, is obtained using (5.7). This figure illustrates the results for these functions f, for different

choices of «, 8, L, and, respectively, N = 120, 100.

2.0 o 3.0{ . w»
— u(t) — u(t)
151 551
1.01
2.01
0.51
151
0.0
1.01
_0.5<
0.51
0 5 10 15 20 25 30 0 2 4 6 8 10
a=2,B=15, u(0)=1, u(0) =1, f(t) = 0. a=1.5, =125, u(0) = 1/2, ur(0) = 1/2, f(t) = cos(t).

FIGURE 3. Solutions u(t) and u™ for 1 <n < N on [0, L].
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Finally, we compare u(t,) and u™ to obtain pointwise errors on the interval [0, L]. In Figure 4 we show
the absolute error for the same functions f and parameters «, 8, u and p previously given.

o~ e lulty) ) 10729 Cee jutt) - v —
\ ‘,.‘t P o', oo SN
PRSI N N
140 1 H b v N N, M Vo 1
Voo 14 1 e Yoy o~ ;N v
1! V! [ p! [ o { N ] \ / v
1 i i 1 1y Vo oo ) L
AR T VA VA E A Doy \f i
S R TR Y I B R H
S I A A R i i i
H " 1 1] n H ! i 1!
H il I i 1 I I Hi i
I H i I [ i u W i
! I ' Hi ! H [ [t
i i ' i i il i
|: :: l :I: ||' . I:: §
I 10_ 4
| |
y
1074 |
4
0 5 10 15 20 25 30 0 2 4 6 8 10
a=2,B=1.5 u(0)=1, u(0)=1, f(t)=0. a=1.5, B=1.25, u(0) =1/2, us(0) = 1/2, f(t) = cos(t).

FIGURE 4. Absolute error |u(t,) — u™| for 1 <n < N.

Here we observe the absolute error estimation, by using the method based on resolvent families and
sequences, is consistent with the result given in Theorem 4.21. We observe here a good accuracy using
the sequence of operators {SZ 8, ;L}RENO compared with the exact solution given in terms of the resolvent
family {Sq 5., (t) }+>0. Even though the specific examples involve a single variable (scalar case), the method
introduced can also be used in more complex situations, such as when dealing with self-adjoint operators
(see Example 5.23 below).

Ezxample 5.23.

Now, we consider the following fractional diffusion-wave equation

Rult,x) + pd u(t,x) = Au(t,x)+ f(t,z), zeQ:=(-1,1),t>0,
(5.9) u(0,2) = wuo(w),
ue(0,2) = wyi(x),

where ug,u; € L?(), —A is a non-negative and self-adjoint operator on the Hilbert space X = L2(2).
If A has a compact resolvent, then o(A) = {—=\;, : m € N}, where 0 < A\ < Ag < -+ < A, < -+ with
lim;;,— 00 Ay, = 00. If ¢y, denotes the normalized eigenfunction associated with A,,, then

—Av = Z AV, dm) 12(Q)@m, for all v € D(A).
m=1
Following [39, Example 5.3], we take the operator Au(t,z) = 02u(t, ), the initial conditions ug(z) =
uy(z) = 0, the function f(t,z) = e *sin(rx), p =1 and v = 1/2.
Multiplying both sides of (5.9) by ¢,,(z) and integrating over Q we get that for every m € N, the

function w, (t) := (u(t), ém)r2(q) is a solution of

W () + 07 P () = — At () + 74, £> 0
U (0) = ul,(0) = 0.
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From (5.3) it follows that

um(t) = (goc—l * Sa,ﬁ,u * fo)(t)7

where fo(t) = et and

Sepult) = Z( )Jt(a ﬁ)yEer(L )7+1(_/\mta)-
j=0

Since fo(t) = Z;O:O (_qt!)q we may proceed similarly to Example 5.22 to obtain

oo oo oo

J +k)! tla=B)j+atqtak i
Un(t) = (Gam1 # Sapux fo) (O = DD > (V0 == e e e U

q=0 j=0 k=0

Since
oo
= Z U (E)Pm (), V>0, x €
we get that the explicit analytical solutions to (5.9) is given by

=3 (gae1%Sapu* fo)O)pm(z), VE>0, z€Q,
m=1

where a = 2,8 = 3/2 and pu = 1. Finally, and proceeding as in Example 5.22, we may obtain that
7_2(]{24 %S B *fO Z Z Z _ i k.T ﬁ)]+a+q+1+o¢k(n)pk(_>\m)k'
q=0 j=0 k=0

and therefore, the solution to the semi-discrete problem

Vi (x) +¢ V3 2u (2) = Au™(z) + f*(z), ze€Q:=(-1,1),n € Ny,
with initial conditions u"(z) = u'(z) = 0,2 € €, is given by
=2 > > > (1= ,k,) Rl DIt R () o (- \) (1), @ € (—1,1).

m=1 q=0 j=0 k=0
6. APPENDIX

A. Resolvent families. This section provides a summary of the main properties of the resolvent families
and sequences employed throughout this paper.

The following result, similar to the Hille-Yosida Theorem for Cy-semigroups, follows directly from [20,
Theorem 3.4].

Theorem A.1. Let A be a closed linear densely defined operator in a Banach space X. Let yn > 0 and
1 < B < a<2. Then, the following assertions are equivalent.
(1) The operator A is the generator of an (v, 8, p)-resolvent family {Sa p,.(t)}¢+>0 which satisfies
1Sa,8,. ()| < Ke¥t for allt > 0 and for some constants K > 0 and v € R.
(2) There exist constants v € R and K > 0 such that
(a) {4+ u\? i Red > v} C p(A) and
(b) The mapping X — H(X) := X*71 (A* + pA? — A)_l satisfies the estimates
Kn!

_ )y dVH()
for all X > v and n =0,1,2..., where H™M () = S

Proposition A.2 (Generation). Let > 0 and 1 < 8 < o < 2 and A € Sect(, M) where 0 = &F. If
(= B) <1, then A generates an («, 8, p)-resolvent family.

1™ (V)| <
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Proof. By Theorem A.1 we need to find constants K > 0 and v € R satisfying condition (2). If fact, for
A € C we define h (X) := X* + pAP. Let A = re’® with |¢| < Z and r > 0. We may assume that ¢ > 0
without any restriction. Then

i N it)
arg(h(re’®)) = Im(In(h(re —Im/ L ln(h(ret dt_Im/ h(re ezire

, o o id(a—B)
Since %S‘) = (a — B)Aaiw + 8, and cos(¢(a — B)) > 0 we obtain % <lforalr>0

and therefore

) |[re—Beit(a—p)| le%s
|arg(h(N))] < /0 ((a - B) [P eia(a=P) 1 i + ﬁ) dt < agp < -5 = 0.

As A is sectorial operator, h(\) € Sp for all A > v := 0, and therefore h(\) € p(A). For such A we define
H(\) := A1 (h()\) — A)"". Then, H(\) = ;\f%mh(k)(h()\) — A)~1. Since (o — B) < 1, A € Sect (6, M)
and g(A\) € p(A), we obtain

B
Al AH —————[h(N)[|(h(\) — A) 7| < M.
(A1) | ()H_|/\a,[3+u||()|||(() )<

On the other hand, \2H’(\) = (o — DAH () — a(AH(A))2 — BuAP~*XH(A)AH (N). From (A.1) we obtain

that [N~ AH ()| < ﬁ, which implies
M
(A.2) IA2ZH' (M) < (a — 1)M + aM? + mWM < (a—1)M +aM?+ BM? = K,
i
for all A > 0. From (A.1)-(A.2) we conclude that A is the generator of an (o, 8, p)-resolvent family such
that ||Sa,5,.(t)]| < K, by Proposition [30, Proposition 0.1] and Theorem A.1. O

The next theorem gives an asymptotic behavior of ||Sa,g,.(t)||. Its proof follows similarly to [17,
Theorem 4.1] and therefore, we omit the details.

Theorem A.3. Let 4 > 0 and 1 < < a < 2 and A € Sect(0,w, M) where § = ¢ and w < 0. If
(a—p) < %, then there exists a constant C > 0 depending only on «, 8 and u such that

C
A3 Sopu®)] < . t>0.
( ) || ,B,u( )H — 1+|w|(ta+ut5)
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