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Abstract. In this paper we study the existence and asymptotic behavior of the solution u(t) to the

multi-term fractional differential equation

(∗) ∂α
t u(t) + µ∂β

t u(t) = Au(t) + f(t), t ≥ 0,

where 1 ≤ β ≤ α ≤ 2, µ ≥ 0, A is a closed and linear operator defined in a Banach space X, and for
η > 0, ∂η

t u(t) is the Caputo fractional derivative of u.

To this end, we introduce a family of linear operators generated by A, we establish conditions for A

to be the generator of such family, and investigate its asymptotic behavior to study the behavior of u
as t tends to infinity.

Furthermore, we analyze a discrete version of (∗) and introduce a sequence of linear operators gen-

erated by A to explore its connection with the continuous solution u(t) and the discrete solution un of
this equation. Finally, we derive an error estimate for ∥u(tn) − un∥ and provide examples to illustrate

our results.

1. Introduction

Consider a rigid plate of mass m and area S. Assume that the plate is immersed in a newtonian fluid
of infinite extend and suppose that it is connected to a fixed point by a massless spring of stiffness σ. If
ρ and ν denote, respectively, the fluid density and viscosity, then the displacement u(t) of the plate at
time t, obeys the Bagley-Torvik equation

(1.1) mu′′(t) + 2S
√
νρ∂

3
2
t u(t) + σu(t) = 0,

subject to initial conditions u(0) = u0 and u′(0) = u1. See for instance [35]. Here, ∂
3
2
t u denotes the

Caputo fractional derivative of order 3
2 of u (see [28]). The existence of exact and numerical solutions to

the scalar multi-term equation (1.1) has been extensively studied in recent years. For instance, [3, 4, 6, 9,
36, 37, 38] investigate numerical methods for the Bagley-Torvik equation using various approaches, while
[2, 7, 19, 26, 31, 32, 39] focus on the stability and numerical solutions of multi-term fractional differential
equations with arbitrary fractional orders.

In a more general context, this equation can be written in an abstract form as

(1.2)

 ∂αt u(t) + µ∂βt u(t) = Au(t) + f(t), t ≥ 0,
u(0) = u0,
u′(0) = u1,

where 1 ≤ β ≤ α ≤ 2, µ ≥ 0, f is a given function, A is a closed linear operator defined in a Banach

space X, u0, u1 ∈ X, and, ∂αt , ∂
β
t are the Caputo fractional derivatives of order α and β, respectively.

The existence of mild solutions to abstract multi-term fractional differential equations in the form of
(1.2) represents a subject of increasing interest in the last years and the typical method to find these
solutions consists in the construction of a strongly continuous family of operators whose properties are
analogous to the C0-semigroups of operators. See for instance [1, 17, 21, 34, 39] and references therein.
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In this work, we investigate the existence of solutions to the abstract multi-term equation (1.2). Our
approach is based on the theory of fractional resolvent families, which enables the representation of the
solution to (1.2) as a variation-of-constants formula involving these resolvent families. More concretely,
we show that the mild solution to (1.2) is given by

u(t) = Sα,β,µ(t)u0+µ(gα−β∗Sα,β,µ)(t)u0+(g1∗Sα,β,µ)(t)u1+µ(gα−β+1∗Sα,β,µ)(t)u1+(gα−1∗Sα,β,µ∗f)(t),

where {Sα,β,µ(t)}t≥0 is a strongly continuous family whose Laplace transform verifies Ŝα,β,µ(λ)x =
λα−1(λα + µλβ −A)−1x for all x ∈ X and λ ∈ C with λα + µλβ ∈ ρ(A) and for η > 0 the function gη is

defined by gη(t) :=
tη−1

Γ(η) , t > 0. See Definition 2.1 below.

Moreover, we give a discretization in time to equation (1.2) based on a sequence of linear operators
generated by A and the backward Euler convolution method for τ > 0 (see for instance [12, 13, 14, 24, 25]),
to study the existence of solutions to the abstract discrete multi-term equation

(1.3) C∇αun + µC∇βun = Aun + fn,

for all n ∈ N0, under the initial conditions u0 = u0, u
1 = u1. Here, C∇αun represents an approximation

of the Caputo fractional derivative ∂αt u(t) at time t = τn (where τ > 0 is the step size) which is defined
by

C∇αun :=

n∑
j=2

k2−ατ (n− j)
(uj − 2uj−1 + uj−2)

τ2
,

where, for ρτj (t) := e−
t
τ

(
t
τ

)j 1
τj! , u

j is defined by uj :=
∫∞
0
ρτj (t)u(t)dt, and k

η
τ (j) :=

τη−1Γ(η+j)
Γ(η)Γ(j+1) for all

j ∈ N0 and η > 0. It is a well-known fact that un approximates the value u(tn) where tn := nτ, and the
solution to (1.3) can be written again as a variation-of-parameters formula as (see Theorem 3.17 below)

un = Snα,β,µu0+µτ(k
α−β
τ ⋆Sα,β,µ)

nu0+τ(k
1
τ ⋆Sα,β,µ)

nu1+µτ(k
α−β+1
τ ⋆Sα,β,µ)

nu1+τ
2(kα−1

τ ⋆Sα,β,µ⋆f)
n,

for all n ≥ 2, where Snα,β,µ is defined as

Snα,β,µx :=

∫ ∞

0

ρτn(t)Sα,β,µ(t)xdt,

for all x ∈ X, and for η > 0,

(kητ ⋆ Sα,β,µ)
nx :=

n∑
j=0

kητ (n− j)Sjα,β,µx.

Finally, we study the we study the difference ∥u(tn)− un∥, where u is the solution to (1.2) and un solves
the discrete equation (1.3) and we show that, given a suitable conditions on the parameters α, β and µ,
there exists a constant C = C(T ) > 0 (independent of the solution, the data and the step size) such that,
for 0 < tn ≤ T, there holds

∥u(tn)− un∥ ≤ Cτtβε−1
n (∥Aεu0∥+ ∥Aεu1∥+ ∥Aεf∥) ,

where 0 < ε < 1 satisfies βε < 1 and u0, u1 and f(t) belong to the domain of Aε.
The paper is organized as follows. In Section 2 we give preliminaries on resolvent families and sequences.

Section 3 is devoted to the existence of solutions to the discrete multi-term equation (1.3). Here, given a
time step size τ > 0, we study the connection between the continuous and the discrete resolvent families
{Sα,β,µ(t)}t≥0 and {Snα,β,µ}n∈N, respectively, as well as, its consequences on the existence of solutions to

(1.3). In Section 4 we study error estimates of the continuous and discrete solution, that is, we study the
norm difference ∥u(tn)−un∥. Additionally, in Section 5 we give some examples to illustrate the theoretical
results. Finally, Section 6 corresponds to an Appendix that summarizes the main properties of resolvent
families.
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2. Resolvent families, mild solutions and fractional calculus.

For a Banach space X ≡ (X, ∥ ·∥), B(X) denotes the Banach space of all bounded and linear operators
from X into X. Given a closed linear operator A defined on X, its resolvent set is denoted by ρ(A), the
resolvent operator is defined by R(λ,A) = (λ−A)−1 for all λ ∈ ρ(A), and σ(A) defines the spectrum of A.
A family of operators {S(t)}t≥0 ⊂ B(X) is called exponentially bounded if there exist real numbersM > 0
and ω ∈ R such that ∥S(t)∥ ≤Meωt, for any t ≥ 0. We observe that if {S(t)}t≥0 ⊂ B(X) is exponentially

bounded, then the Laplace transform of S(t), Ŝ(λ)x :=
∫∞
0
e−λtS(t)xdt, exists for all Reλ > ω.

Definition 2.1. Let µ ≥ 0, and 1 ≤ β ≤ α ≤ 2 be given. Let A be a closed linear operator defined in
a Banach space X. The operator A is called the generator of an (α, β, µ)-resolvent family if there exist
ω ≥ 0 and a strongly continuous and exponentially bounded function Sα,β,µ : R+ → B(X) such that
{λα + µλβ : Reλ > ω} ⊂ ρ(A) and

λα−1(λα + µλβ −A)−1x =

∫ ∞

0

e−λtSα,β,µ(t)xdt, for all Reλ > ω, x ∈ X.

In this case, {Sα,β,µ(t)} is called the (α, β, µ)-resolvent family generated by A.

Let a and b defined, respectively, by

a(t) :=

∫ t

0

gα−1(t− s)b(s)ds, b(t) := Eα−β,1(−µtα−β),

where, for ν > 0, gν(t) := tν−1

Γ(ν) , and Eν,1 denotes the Mittag-Leffler function. Then, â(λ) = 1
λα+µλβ ,

b̂(λ) = λα−1

λα+µλβ for all Re(λ) > 0, and {Sα,β,µ(t)} corresponds to an (a, b)-regularized families generated

by A, see [20], and from [20, Lemma 2.2 and Proposition 2.5], it has the following properties.

Proposition 2.2. Let µ ≥ 0, and 1 ≤ β ≤ α ≤ 2 be given. Let {Sα,β,µ(t)}t≥0 be the (α, β, µ)-resolvent
family generated by A. Then,

(1) Sα,β,µ(0) = I, where I denotes the identity operator in X.
(2) For all x ∈ D(A) and t ≥ 0 we have Sα,β,µ(t)x ∈ D(A) and ASα,β,µ(t)x = Sα,β,µ(t)Ax.

(3) For x ∈ X and t ≥ 0 we have
∫ t
0
a(t− s)Sα,β,µ(s)xds ∈ D(A) and

Sα,β,µ(t)x = b(t)x+A

∫ t

0

a(t− s)Sα,β,µ(s)xds.

For further details on resolvent families, see Appendix in Section 6.

Definition 2.3. We say that a function u ∈ C1(R+, X) is a strong solution to equation (1.2) if u(t) ∈
D(A) for all t ≥ 0 and satisfies (1.2).

If we take Laplace transform in (1.2) we obtain

(λα + µλβ −A)û(λ) = (λα−1 + µλβ−1)u0 + (λα−2 + µλβ−2)u1 + f̂(λ),

for all Re(λ) > 0. If λα + µλβ ∈ ρ(A), then

û(λ) = λα−1(λα + µλβ −A)−1u0 + µλβ−1(λα + µλβ −A)−1u0

+λα−2(λα + µλβ −A)−1u1 + µλβ−2(λα + µλβ −A)−1u1 + (λα + µλβ −A)−1f̂(λ),

where u0, u1 ∈ X. The uniqueness of the Laplace transform and Definition 2.1 imply that if A is the
generator of a resolvent family {Sα,β,µ(t)}t≥0, then a solution to Problem (1.2) is given by
(2.1)
u(t) = Sα,β,µ(t)u0+µ(gα−β∗Sα,β,µ)(t)u0+(g1∗Sα,β,µ)(t)u1+µ(gα−β+1∗Sα,β,µ)(t)u1+(gα−1∗Sα,β,µ∗f)(t).

As u0, u1 merely belong to X, we can not prove (by Proposition 2.2) that u(t) defined by (2.1) belongs
to D(A) for all t ≥ 0 to obtain a strong solution, and therefore we need to introduce the following notion
of solution.
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Definition 2.4. We say that a continuous function u : R+ → X is a mild solution to equation (1.2) if
u(t) satisfies (2.1) for all t ≥ 0.

Now, consider f(t) = 0 for all t ≥ 0, and assume that α − β > 1. As Sα,β,µ(0)x = x, Ŝα,β,µ(λ)x =
λα−1(λα + µλβ − A)−1x and (λα + µλβ − A)(λα + µλβ − A)−1x = x, for all x ∈ X, we obtain for any
λ ∈ C with λα + µλβ ∈ ρ(A), that

Ŝ′
α,β,µ(λ)x = λŜα,β,µ(λ)x− x = λα(λα + µλβ −A)−1x− x =

1

λα−1
AŜα,β,µ(λ)x− µ

1

λα−β−1
Ŝα,β,µ(λ)x,

and therefore

(2.2) S′
α,β,µ(t)x = A(gα−1 ∗ Sα,β,µ)(t)x− µ(gα−β−1 ∗ Sα,β,µ)(t)x, t ≥ 0, x ∈ X.

Thus, if a mild solution u to equation (1.2) is differentiable on R+, then by (2.2), it verifies u(0) = u1
and u′(0) = u1, and therefore, in this case, a mild solution is a strong solution of (1.2).

Now, we recall the definition of Caputo fractional derivative. For α > 0, let m = ⌈α⌉ be the smallest
integer m greater than or equal to α. Let f : R+ → X be a Cm-differentiable function. The Caputo

fractional derivative of order α is defined by ∂αt f(t) :=
∫ t
0
gm−α(t− s)f (m)(s)ds. It is well known that if

α = m ∈ N, then ∂mt f = dmf
dtm , and that if 1 < α < 2, then ∂̂αt f(λ) = λαf̂(λ) − λα−1f(0) − λα−2f ′(0).

For more details on fractional calculus, we refer to [18].
The operator A : D(A) ⊂ X → X is called sectorial of angle θ if there are constants ω ∈ R, M > 0

and θ ∈ (π/2, π) such that ρ(A) ⊃ Sθ,ω := {z ∈ C : z ̸= ω : | arg(z − ω)| < θ} and

∥(z −A)−1∥ ≤ M

|z − ω|
for all z ∈ Sθ,ω.

In this case, we write A ∈ Sect(θ, ω,M). We may assume, without lost of generality, that ω = 0. In fact,
if not so we can take the operator A− ωI, which is also sectorial. In that case, we write A ∈ Sect(θ,M)
and we denote the sector Sθ,0 as Sθ. More details on sectorial operators can be found in [8, 15].

Let A be a closed operator whose resolvent set contains the real axis (−∞, 0]. For 0 ≤ ε ≤ 1, Xε

denotes the domain of the fractional power Aε, that is Xε := D(Aε) endowed with the graph norm
∥x∥ε = ∥Aεx∥. Examples of such operators are sectorial operators with ω ≥ 0. It is a well known fact
that if 0 < ε < 1, and x ∈ D(A), then there exists a constant κ ≡ κε > 0 such that (see [27])

∥Aεx∥ ≤ κ∥Ax∥ε∥x∥1−ε.(2.3)

The set of non-negative integer numbers is denoted by N0 and the non-negative real numbers by R+
0 .

Take τ > 0 fixed and n ∈ N0. We define the function ρτn by ρτn(t) := e−
t
τ

(
t
τ

)n 1
τn! . We notice that

ρτn(t) ≥ 0 for all t ≥ 0, n ∈ N0, and
∫∞
0
ρτn(t)dt = 1, for all n ∈ N0.

Given a bounded and locally integrable function u : R+
0 → X, we define the sequence (un)n by

(2.4) un :=

∫ ∞

0

ρτn(t)u(t)dt, n ∈ N0.

The vector space of all vector-valued functions v : R+
0 → X is denoted by F(R+

0 ;X). The backward

Euler operator ∇τ : F(R+
0 ;X) → F(R+

0 ;X) is defined by ∇τv
n := vn−vn−1

τ , n ∈ N. For m ≥ 2,

∇m
τ : F(R+

0 ;X) → F(R+
0 ;X) is defined recursively as

(∇m
τ v)

n := ∇m−1
τ (∇τv)

n, n ≥ m,

where ∇1
τ ≡ ∇τ and ∇0

τ is the identity operator.
In order to define the fractional difference operators, we introduce the sequence (see [22])

kατ (n) :=

∫ ∞

0

ρτn(t)gα(t)dt, n ∈ N0, α > 0.

From definition, it follows that kατ (n) =
τα−1Γ(α+n)
Γ(α)Γ(n+1) for any n ∈ N0, and α > 0.
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Definition 2.5. [5, 29] Let α > 0. Give a vector-valued sequence v ∈ F(R;X), the αth−fractional sum
of v defined by (∇−α

τ v)n := τ
∑n
j=0 k

α
τ (n− j)vj , n ∈ N0.

Definition 2.6. [5, 29] Let α ∈ R+ \N0. The Caputo fractional backward difference operator of order α,

C∇α : F(R+;X) → F(R+;X), is defined by (C∇αv)n := ∇−(m−α)
τ (∇m

τ v)
n, n ∈ N, where m−1 < α < m.

In this definition, if α ∈ N0, then C∇α is defined as the backward difference operator ∇α
τ , and we

adopt the convention
∑−k
j=0 v

j = 0, for all k ∈ N (see [14, Chapter 1, Section 1.5]).

The following result can be obtained similarly to [29, Theorem 2.7], and relates the Caputo fractional
derivative and the Caputo fractional backward difference operator.

Theorem 2.7. Let 1 < α < 2. If u : [0,∞) → X is a twice differentiable and bounded function, then∫∞
0
ρτn(t)∂

α
t u(t)dt = C∇αun, for all n ≥ 2, where (un)n defines the sequence (2.4).

Additionally, the next Lemma gives an expression for the Z-transform to the Caputo fractional back-
ward difference operator, which is an analogous result for the Laplace transform of the Caputo fractional
derivative. It proofs follows similarly to [5, Theorem 3.12].

Lemma 2.8. Let 1 < α < 2. Let u : [0,∞) → X be a twice differentiable and bounded function. Define
(un)n by the sequence (2.4). If wn := C∇αun, n ∈ N, then

w̃(z) =
1

τα

(
z − 1

z

)α
ũ(z)− 1

τα

(
z − 1

z

)α−1

u(0)− 1

τα−1

(
z − 1

z

)α−2

u′(0).

For a given family of operators {S(t)}t≥0 ⊂ B(X), we define the sequence Snx :=
∫∞
0
ρτn(t)S(t)xdt,

for any n ∈ N0, x ∈ X. For a continuous and bounded function c : R+ → C we also define cn :=∫∞
0
ρτn(t)c(t)dt, n ∈ N0, and the discrete convolution c ⋆ S as (c ⋆ S)n :=

∑n
k=0 c

n−kSk, n ∈ N0.
The following results will be useful to prove the existence of solutions to (1.3).

Theorem 2.9. [29] Let c : R+ → C be Laplace transformable such that ĉ(1/τ) exists, and let {S(t)}t≥0 ⊂
B(X) be strongly continuous and Laplace transformable such that Ŝ(1/τ) exists. Then, for all x ∈ X,∫∞
0
ρτn(t)(c ∗ S)(t)xdt = τ(c ⋆ S)nx, n ∈ N0.

Proposition 2.10. Let α > 0. Let {S(t)}t≥0 ⊂ B(X) be strongly continuous and Laplace transformable

such that Ŝ(1/τ) exists. Then,
∫∞
0
ρτn(t)(gα ∗S)(t)xdt = τ

∑n
j=0 k

α
τ (n− j)Sjx, for all x ∈ X and n ∈ N0.

In particular, we have that for any α, β > 0,

(2.5) kα+βτ (n) = τ

n∑
j=0

kατ (n− j)kβτ (j) = τ(kατ ⋆ k
β
τ )
n, n ∈ N0.

By s(N0, X), we denote the vector space consisting of all sequences s : N0 → X. Given a vector-
valued sequence s ∈ s(N0, X), its Z-transform, s̃, is defined by s̃(z) :=

∑∞
j=0 z

−js(j), where z ∈ C.
The convergence of this series holds for |z| > R, where R is large enough, and if s1, s2 ∈ s(N0, X) and
s̃1(z) = s̃2(z) for all |z| > R for some R > 0, then s1(j) = s2(j) for all j = 0, 1, ...

Definition 2.11. Let µ ≥ 0, and 1 ≤ β ≤ α ≤ 2 be given. The closed linear operator A is called the
generator of the (α, β, µ)-resolvent sequence {Snα,β,µ}n∈N0 ⊂ B(X) if it satisfies the following conditions

(1) Snα,β,µx ∈ D(A) for all x ∈ X and ASnα,β,µx = Snα,β,µAx for all x ∈ D(A), and n ∈ N0.

(2) For each x ∈ X and n ∈ N0,

(2.6) Snα,β,µx = bnx+ τA(a ⋆ Sα,β,µ)
nx = bnx+ τA

n∑
j=0

an−jSjα,β,µx,

where am := τ
∑m
j=0 k

α−1
τ (m− j)bj and bj :=

∑∞
l=0 k

(α−β)l+1
τ (j)(−µ)l.
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Remark 2.12. Let b(t) := Eα−β,1(−µtα−β) and a(t) := (gα−1 ∗ b)(t). By [16, Formula 11.15] and Propo-
sition 2.10, we have

bj =

∫ ∞

0

ρτn(t)b(t)dt =

∞∑
l=0

k(α−β)l+1
τ (j)(−µ)l and aj =

∫ ∞

0

ρτn(t)a(t)dt = τ

m∑
j=0

kα−1
τ (m− j)bj .

Proposition 2.13. Let {Snα,β,µ}n∈N0 ⊂ B(X) be a discrete (α, β, µ)-resolvent sequence generated by A.
Then its Z-transform satisfies

S̃α,β,µ(z)x =
1

τα

(
z − 1

z

)α−1
(

1

τα

(
z − 1

z

)α
+ µ

1

τβ

(
z − 1

z

)β
−A

)−1

x, x ∈ X, |z| > 1.

Proof. Let x ∈ X and |z| > 1. Taking Z-transform in (2.6), we obtain(
1

τ ã(z)
−A

)
S̃α,β,µ(z)x =

b̃(z)

τ ã(z)
x.

As A is a closed operator, by (1) in Definition 2.11, we deduce that 1/τ ã(z) ∈ ρ(A) and

(2.7) S̃α,β,µ(z)x =
b̃(z)

τ ã(z)

(
1

τ ã(z)
−A

)−1

x.

Let b(t) and a(t) as in Remark 2.12. By [11, Proposition 2.1], b̃(z) = 1
τ b̂
(
z−1
τz

)
. Additionally, as

b̂(λ) = λα−1(λα + µλβ)−1 (see for instance [16]), we obtain

b̃(z) =
1

τα

(
z − 1

z

)α−1
(

1

τα

(
z − 1

z

)α
+ µ

1

τβ

(
z − 1

z

)β)−1

.

Finally, by Proposition 2.10, an = τ(kα−1
τ ⋆ b)n, and thus

ã(z) = τ k̃α−1
τ (z)b̃(z) =

1

τ

(
1

τα

(
z − 1

z

)α
+ µ

1

τβ

(
z − 1

z

)β)−1

,

and the result follows from (2.7). □

From Remark 2.12 we have the following result.

Proposition 2.14. Let µ ≥ 0, and 1 ≤ β ≤ α ≤ 2 be given. Assume that A is the generator of an
(α, β, µ)-resolvent family {Sα,β,µ(t)}t≥0. Then, A generates the (α, β, µ)-resolvent sequence {Snα,β,µ}n∈N0

given by Snα,β,µ =
∫∞
0
ρτn(t)Sα,β,µ(t)dt.

3. Construction of the method and existence of solutions.

Consider the problem

(3.1) C∇αvn + µC∇βvn = Avn + fn, n ≥ 2.

where A is a sectorial operator and (fn)n∈N0
is a given sequence.

Since by definition, C∇αv0 = C∇αv1 = 0, for any n ≥ 2, we get

C∇αvn = τ

n−1∑
j=2

k2−ατ (n− j)(∇2
τv)

j + τ−α(vn − 2vn−1 + vn−2),
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and, the same identity holds for β instead α. Then, (3.1) is equivalent to

(τ−α + τ−β −A)vn = 2(τ−α + τ−β)vn−1 − (τ−α + τ−β)vn−2

− τ

n−1∑
j=2

[k2−ατ (n− j)− k2−βτ (n− j)](∇2
τv)

j + fn.(3.2)

Consequently, to compute vn for n ≥ 2, it is necessary to know vn−1, vn−2, ..., v1, v0. To achieve this, we
need to solve the equation (3.2) and we may define v0 and v1 as u(0) and u′(0), respectively (or their
respective available approximations). Given that A is a sectorial operator, we can select a sufficiently
small step size τ to ensure the invertibility of (τ−α + τ−β −A).

We conclude that if A is a sectorial operator and max{ω, 0} < τ−α + τ−β , then the solution (vn)n∈N0

to (3.1) subject to the initial conditions v0 = u0 and v1 = u1 is given by

vn = 2(τ−α + τ−β)(τ−α + τ−β −A)−1vn−1 − (τ−α + τ−β)(τ−α + τ−β −A)−1vn−2

− τ

n−1∑
j=2

[k2−ατ (n− j)− k2−βτ (n− j)](τ−α + τ−β −A)−1(∇2
τv)

j + (τ−α + τ−β −A)−1fn, n ≥ 2.(3.3)

Summarizing, we have the following result.

Proposition 3.15. Let A ∈ Sect(θ, ω,M) in a Banach space X with max{ω, 0} < τ−α+ τ−β . Then, the
solution (vn)n∈N0

to problem (3.1) is given by the sequence (3.3).

Now, assume for the moment that u : [0,∞) → X is a twice differentiable and bounded function.
Suppose that A is the generator of an (α, β, µ)-resolvent family {Sα,β,µ(t)}t≥0.

Multiplying the equation (1.2) by ρτn(t) and integrating over [0,∞) we obtain, by Theorem 2.7, the
discrete multi-term equation

(3.4) C∇αun + µC∇βun = Aun + fn, n ≥ 2,

where un =
∫∞
0
ρτn(t)u(t)dt and f

n =
∫∞
0
ρτn(t)f(t)dt.

Take u0 := u0 and u1 := u1. Proceeding as above, we obtain that (un)n∈N verifies the scheme

(τ−α + τ−β −A)un = 2(τ−α + τ−β)un−1 − (τ−α + τ−β)un−2

− τ

n−1∑
j=2

[k2−ατ (n− j)− k2−βτ (n− j)](∇2
τu)

j + fn.(3.5)

We will now represent the solution to (3.5) using a variation-of-parameters formula involving the
resolvent family {Sα,β,µ(t)}t≥0. Given the equivalence of (3.5) and (3.4), we apply the Z-transform to
(3.4). Multiplying (3.4) by z−n (where |z| > 1) and summing over N0 yields, according to Lemma 2.8,
that(

1

τα

(
z − 1

z

)α
+ µ

1

τβ

(
z − 1

z

)β
−A

)
ũ(z) =

(
1

τα

(
z − 1

z

)α−1

+ µ
1

τβ

(
z − 1

z

)β−1
)
u(0)+(

1

τα−1

(
z − 1

z

)α−2

+ µ
1

τβ−1

(
z − 1

z

)β−2
)
u′(0) + f̃(z).

As A generates the sequence {Snα,β,µ}n∈N0 (see Proposition 2.14), by Proposition 2.13, we deduce that

ũ(z) =S̃α,β,µ(z)u(0) + µτk̃α−βτ (z)S̃α,β,µ(z)u(0) + τ k̃1τ (z)S̃α,β,µ(z)u
′(0) + µτk̃α−β+1

τ (z)S̃α,β,µ(z)u
′(0)+

τ2k̃α−1
τ (z)S̃α,β,µ(z)f̃(z).
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Summarizing, we have proven the following result.

Proposition 3.16. Let τ > 0. Let A be the generator of a bounded (α, β, µ)-resolvent family {Sα,β,µ(t)}t≥0.
If u0, u1 ∈ X and f is bounded, then the fractional multi-term difference equation (3.4) has a unique so-
lution given by

un = Snα,β,µu0+µτ(k
α−β
τ ⋆Sα,β,µ)

nu0+τ(k
1
τ ⋆Sα,β,µ)

nu1+µτ(k
α−β+1
τ ⋆Sα,β,µ)

nu1+τ
2(kα−1

τ ⋆Sα,β,µ⋆f)
n,

for all n ≥ 2, and u0 = u(0), u1 = u′(0), where Snα,β,µ :=
∫∞
0
ρτn(t)Sα,β,µ(t)dt.

Now, given that v0 = u0 = u0 and v1 = u1 = u1, the sequences in (3.2) and (3.5) are identical.
Consequently, without imposing any regularity on the sequence (vn)n, we have the following result.

Theorem 3.17. Let τ > 0. Let A be the generator of an (α, β, µ)-resolvent sequence {Snα,β,µ}n∈N0
. If

u0, u1 ∈ X and (fn)n∈N0 is a given sequence, then the fractional multi-term difference equation (3.1) has
a unique solution given by
(3.6)
vn = Snα,β,µu0+µτ(k

α−β
τ ⋆Sα,β,µ)

nu0+τ(k
1
τ ⋆Sα,β,µ)

nu1+µτ(k
α−β+1
τ ⋆Sα,β,µ)

nu1+τ
2(kα−1

τ ⋆Sα,β,µ⋆f)
n,

for all n ≥ 2, and v0 = u0, v
1 = u0.

From Proposition A.2, Proposition 2.14, and Theorem 3.17, we have the following Corollary.

Corollary 3.18. Let µ ≥ 0, 1 < β < α ≤ 2 and A ∈ Sect(θ,M) where θ = απ
2 . If α− β ≤ 1, u0, u1 ∈ X

and (fn) is a given sequence, then the fractional multi-term difference equation (3.1) has a unique solution
given by (3.6), where {Snα,β,µ}n∈N0 is the (α, β, µ)-resolvent sequence generated by A.

4. Convergence and error estimates for sectorial operators

In general, each term of the sequence vn approximates the value of the function v at tn, where tn = nτ
(for τ > 0). In this section, we study the norm difference ∥u(tn) − un∥, where u is the mild solution to
Problem (1.2) and un solves the discrete difference equation (3.4).

For a closed operator A ∈ Sec(θ,M) and t > 0, we consider the path Γ := Γt defined as: For π2 < θ < π,

we take ϕ such that 1
2ϕ <

π
2α < ϕ < θ. Next, we define Γt (see Figure 1) as the union Γ1

t ∪ Γ2
t , where

Γ1
t :=

{
1

t
eiψ/α : −ϕ < ψ < ϕ

}
and Γ2

t :=

{
re±iϕ/α :

1

t
≤ r

}
.

Figure 1. Plot of path Γt.

The next result will be useful to prove the main theorem in this section. For a similar result see [29].
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Lemma 4.19. Let A ∈ Sec(θ,M) and Γ be the complex path defined above. If µ ≥ 0, then
∫
Γ

∣∣∣ eztzµ ∣∣∣ |dz| ≤
Cαt

µ−1 for all t > 0, where Cα :=
(
2ϕ
∫ ϕ
−ϕ e

cos(ψ/α)dψ + 2
− cos(ϕ/α)

)
.

If A ∈ Sec(θ,M), then zα + µzβ = h(z) ∈ ρ(A) (see Proposition A.2), and therefore, the inversion
formula of the Laplace transform implies that

(4.1) Sα,β(t) =
1

2πi

∫
Γ

eztzα−1(h(z)−A)−1dz, t > 0,

where Γ := Γt is the path defined in Lemma 4.19.

Theorem 4.20. Let µ ≥ 0 and 1 < β < α ≤ 2 and A ∈ Sect(θ,M) where θ = απ
2 . Suppose that there

exist 0 < ε1 < 1 such that α − β < ε1 and 1 + ε1 < α. If there exists K > 0 such that ∥f(t)∥ ≤ Kgγ(t)
for all t ≥ 0, where 0 < γ < 1, then the mild solution u to (1.2) satisfies ∥u(t)∥ → 0 as t→ ∞.

Proof. We know that the mild solution to (1.2) is given by

u(t) = Sα,β,µ(t)u0+µ(gα−β∗Sα,β,µ)(t)u0+(g1∗Sα,β,µ)(t)u1+µ(gα−β+1∗Sα,β,µ)(t)u1+(gα−1∗Sα,β,µ∗f)(t).

By Theorem A.3 we have ∥Sα,β,µ(t)u0∥ → 0 as t → ∞. Let Γ := Γt be the path defined in Lemma 4.19.
Now, as ĝα−β(z) = 1/zα−β and A ∈ Sec(θ,M), we have

∥(gα−β ∗Sα,β,µ)(t)∥ ≤ 1

2π

∫
Γ

|ezt|
|z|α−β

|z|α−1∥(h(z)−A)−1∥|dz| ≤ M

2π

∫
Γ

|ezt|
|z|α−β |z + µzβ−α+1 − ωz1−α|

|dz|.

As 1 − α < 0 and β − α + 1 > 0, we have 1
|z+µzβ−α+1−ωz1−α| → 0 as |z| → 0 and |z| → ∞. Therefore,

there exists M̃1 > 0 such that 1
|z+µzβ−α+1−ωz1−α| ≤ M̃1 for all z such that h(z) ∈ ρ(A). Since α− β < ε1,

the Lemma 4.19 implies that

∥(gα−β ∗ Sα,β,µ)(t)∥ ≤ MM̃1

2π

∫
Γ

|ezt|
|z|α−β

|dz| ≤ CαMM̃1

2π
tα−β−1 → 0 as t→ ∞.

Similarly,

∥(g1 ∗ Sα,β,µ)(t)∥ ≤ M

2π

∫
Γ

|ezt|
|z|1−ε1

|z|α−1−ε1

|zα + µzβ − ω|
|dz|.

Since α − β < ε1 and 1 + ε1 < α we have |z|α−1−ε1

|zα+µzβ−ω| = 1
|z1+ε1+µzβ−α+1+ε1−ωz1+ε1−α| → 0 as |z| → 0

and |z| → ∞. Thus, there exists M̃2 > 0 such that 1
|z1+ε1+µzβ−α+1+ε1−ωz1+ε1−α| ≤ M̃2 for all z with

h(z) ∈ ρ(A). By Lemma 4.19 we obtain

∥(g1 ∗ Sα,β,µ)(t)∥ ≤ CαMM̃2

2π
t−ε1 → 0 as t→ ∞.

Analogously, we obtain

∥(gα−β+1 ∗ Sα,β,µ)(t)∥ ≤ CαMM̃1

2π
tα−β−ε1 → 0 as t→ ∞.

Finally, since ∥f(t)∥ ≤ Kgγ(t) for any t > 0, we have ∥ ̂(gα−1 ∗ f)(z)∥ ≤ K
|z|α+γ−1 for any Re(z) > 0. Then

∥(gα−1 ∗ Sα,β,µ ∗ f)(t)∥ ≤ 1

2π

∫
Γ

|ezt|∥Sα,β,µ(t)∥∥ ̂(gα−1 ∗ f)(z)∥|dz|

≤ K

2π

∫
Γ

|ezt|
|z|α+γ−1

|z|α−1∥(h(z)−A)−1∥|dz|

≤ MK

2π

∫
Γ

|ezt|
|z|γ

1

|zα + µzβ − ω|
|dz|.
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As α, β > 0 we have 1
|zα+µzβ−ω| → 0 as |z| → ∞ and 1

|zα+µzβ−ω| →
1
|ω| as |z| → 0. Therefore, there exists

M̃3 > 0 such that 1
|zα+µzβ−ω| ≤ M̃3. By Lemma 4.19 we conclude that

∥(gα−1 ∗ Sα,β,µ ∗ f)(t)∥ ≤ CαMM̃3K

2π
tγ−1 → 0 as t→ ∞.

□

For a given 0 < ε < 1, the space of all continuous function f : [0,∞) → D(Aε) endowed with the norm
∥f∥ε := supt≥0 ∥f(t)∥ε = supt≥0 ∥Aεf(t)∥ will be denoted by C([0,∞), D(Aε)).

Theorem 4.21. Let µ > 0 and 1 < β < α ≤ 2 and A ∈ Sect(θ,M) where θ = απ
2 . Let 0 < ε < 1 such

that 1 < β(ε + 1) < α and 0 < βε < 1. Suppose that f ∈ C([0,∞), D(Aε)). Let Γ be the complex path
defined above. If u0, u1 ∈ D(Aε), then for each T > 0 there exists a constant C = C(T ) > 0 (independent
of the solution, the data and the step size) such that, for 0 < tn ≤ T, there holds

∥un − u(tn)∥ ≤ Cτtβε−1
n (∥u0∥ε + ∥u1∥ε + ∥f∥ε) .

Proof. By Proposition A.2, the operator A ∈ Sec(θ,M) generates an (α, β)-resolvent family {Sα,β(t)}t≥0.
The solution to (1.2) is given by

u(t) = Sα,β,µ(t)u0+µ(gα−β∗Sα,β,µ)(t)u0+(g1∗Sα,β,µ)(t)u1+µ(gα−β+1∗Sα,β,µ)(t)u1+(gα−1∗Sα,β,µ∗f)(t),

and by Theorem 3.17, the solution to the equation (3.4) is given by

un = Snα,β,µu0+µτ(gα−β ⋆Sα,β,µ)
nu0+τ(g1 ⋆Sα,β,µ)

nu1+µτ(gα−β+1 ⋆Sα,β,µ)
nu1+τ

2(gα−1 ⋆Sα,β,µ ⋆f)
n,

where Snα,β,µ =
∫∞
0
ρτn(t)Sα,β,µ(t)dt. Fix n ∈ N such that 0 < tn ≤ T, where tn := τn. Then, we have

∥un − u(tn)∥ ≤ ∥(Sα,β,µ(tn)− Snα,β,µ)u0∥+ µ∥((gα−β ∗ Sα,β,µ)(tn)− τ(kα−βτ ⋆ Sα,β,µ)
n)u0∥

+∥((g1 ∗ Sα,β,µ)(tn)− τ(k1τ ⋆ Sα,β,µ)
n)u1∥

+µ∥((gα−β+1 ∗ Sα,β,µ)(tn)− τ(kα−β+1
τ ⋆ Sα,β,µ)

n)u1∥
+∥(gα−1 ∗ Sα,β,µ ∗ f)(tn)− τ2(kα−1

τ ⋆ Sα,β,µ ⋆ f)
n∥ := I1 + I2 + I3 + I4 + I5.

Now, we estimate each term Ij for j = 1, 2, ..., 5. Since
∫∞
0
ρτn(t)dt = 1, we can write

(Sα,β,µ(tn)− Snα,β,µ)u0 =

∫ ∞

0

ρτn(t)((Sα,β,µ(tn)− Sα,β,µ(t))u0dt,

and therefore I1 ≤
∫∞
0
ρτn(t)∥(Sα,β,µ(t)− Sα,β,µ(tn))u0∥dt. Now, by (4.1) we can write

(Sα,β,µ(t)− Sα,β,µ(tn))u0 =
1

2πi

∫
Γ

(ezt − eztn)

z
zα(h(z)−A)−1u0dz,

where h(z) = zα + µzβ . Since A(h(z)−A)−1 = A1−ε(h(z)−A)−1Aε we have

(4.2) h(z)(h(z)−A)−1 = A(h(z)−A)−1 + I = A1−ε(h(z)−A)−1Aε + I.

Moreover, we can write

(4.3) zα(h(z)−A)−1 = h(z)(h(z)−A)−1−µzβ(h(z)−A)−1 = h(z)(h(z)−A)−1−µ zβ

h(z)
h(z)(h(z)−A)−1,

and therefore

(Sα,β,µ(t)− Sα,β,µ(tn))u0 =
1

2πi

∫
Γ

(ezt − eztn)

z

(
1− µ

zβ

h(z)

)
u0dz

+
1

2πi

∫
Γ

(ezt − eztn)

z

(
1− µ

zβ

h(z)

)
A1−ε(h(z)−A)−1Aεu0dz.
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Since p(z) := (ezt−eztn )
z and q(z) := µp(z) zβ

h(z) = µ (ezt−eztn )
z · 1

zα−β+µ
have a unique removable singularity

at z = 0 and t ≥ tn we obtain that they can be analytically extended to the region enclosed by the

path ΓR := ΓRtn where ΓR is the path given in Figure 2, and therefore 1
2πi

∫
ΓR

(ezt−eztn )
z u0dz = 0. Since

1
2πi

∫
Γ

(ezt−eztn )
z u0dz = limR→∞

1
2πi

∫
ΓR

(ezt−eztn )
z u0dz, we obtain 1

2πi

∫
Γ

(ezt−eztn )
z u0dz = 0. Similar result

holds for q(z) and therefore

1

2πi

∫
Γ

(ezt − eztn)

z
u0dz =

µ

2πi

∫
Γ

(ezt − eztn)

z

zβ

h(z)
u0dz = 0.

Figure 2. Plot of path ΓR.

On the other hand, since A is a sectorial operator, we get by (2.3)

(4.4) ∥A1−ε(h(z)−A)−1Aεx∥ ≤ κ(M + 1)
∥Aεx∥
|h(z)|ε

,

for all x ∈ D(Aε). Therefore,

∥(Sα,β,µ(t)−Sα,β,µ(tn))u0∥ ≤ κ(M + 1)

2π

(∫
Γ

|ezt − eztn |
|z|

1

|h(z)|ε
|dz|+

∫
Γ

|ezt − eztn |
|z|

µ|z|β

|h(z)|ε+1
|dz|

)
∥Aεu0∥.

We notice that 1
h(z) =

1
zβ

· 1
zα−β+µ

. Now, we write zα−β = reiϕ. If Re(zα−β) ≥ 0, then 1
|zα−β+µ| ≤

2
µ . Now,

if Re(zα−β) < 0, then cos(ϕ) < 0 and 1
|zα−β+µ| ≤

r+µ
r2+2µr cos(ϕ)+µ2 =: f(r). An easy computation shows

that limr→0 f(r) =
1
µ , limr→∞ f(r) = 0, and that f(r) has a maximum at r0 := −µ+2

√
2µ
√

1− cos(ϕ).

Thus

f(r) ≤ f(r0) =
2
√
2

µ

1√
1− cos(ϕ)(

√
1− cos(ϕ)− 2

√
2)2

=:
2
√
2

µ
h1(ϕ),

for all r ≥ 0. Since cos(ϕ) < 0 we may assume that π/2 < ϕ < π, which implies that h1(ϕ) ≤ 1/2 and

therefore f(r) ≤
√
2
µ . We conclude that 1

|zα−β+µ| ≤ max
{

2
µ ,

√
2
µ

}
= 2

µ , which implies that

(4.5)
1

|h(z)|
≤ 2

µ|z|β
,

for all Rez > 0. Moreover, by the generalized mean value theorem, there exist t0, t1 with 0 < tn < t0 <
t1 < t such that

(4.6)
|ezt − eztn |

|z|
≤ (t− tn)

(
|et0z|+ |et1z|

)
,
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and by Lemma 4.19 and (4.5) we obtain∫
Γ

|ezt − eztn |
|z|

1

|h(z)|ε
|dz| ≤

(
2

µ

)ε
(t− tn)

∫
Γ

|et0z|+ |et1z|
|z|βε

|dz| ≤
(
2

µ

)ε
(t− tn)Cα(t

βε−1
0 + tβε−1

1 ),

and∫
Γ

|ezt − eztn |
|z|

µ|z|β

|h(z)|ε+1
|dz| ≤ µ

(
2

µ

)1+ε

(t−tn)
∫
Γ

|et0z|+ |et1z|
|z|βε

|dz| ≤ µ

(
2

µ

)ε+1

(t−tn)Cα(tβε−1
0 +tβε−1

1 ).

Therefore, we have that

∥(Sα,β,µ(t)− Sα,β,µ(tn))u0∥ ≤ 3κ(M + 1)

2π

(
2

µ

)ε
(t− tn)Cα(t

βε−1
0 + tβε−1

1 )∥Aεu0∥.

Since 0 < βε < 1 and tn < t0 < t1 we obtain tβε−1
1 < tβε−1

0 < tβε−1
n and thus

∥(Sα,β,µ(t)− Sα,β,µ(tn))u0∥ ≤ 3κ(M + 1)

π

(
2

µ

)ε
(t− tn)Cαt

βε−1
n ∥Aεu0∥ =: D1(t− tn)t

βε−1
n ∥Aεu0∥.

Since
∫∞
0
ρτn(t)dt = 1 for all n ∈ N, we have∫ ∞

0

ρτn(t)(t− tn)dt =

∫ ∞

0

ρτn(t)tdt− tn = tn+1 − tn = τ,(4.7)

and we conclude that∫ ∞

0

ρτn(t)∥(Sα,β,µ(t)− Sα,β,µ(tn))u0∥dt ≤ D1t
βε−1
n ∥Aεu0∥

∫ ∞

0

ρτn(t)(t− tn)dt ≤ D1τt
βε−1
n ∥Aεu0∥,

for all n ∈ N, and thus
I1 ≤ D1τt

βε−1
n ∥Aεu0∥.

To estimate I2 we notice that, by Theorem 2.9, I2 can be written as

(4.8) I2 = µ

∥∥∥∥∫ ∞

0

ρτn(t)[(gα−β ∗ Sα,β,µ)(tn)− (gα−β ∗ Sα,β,µ)(t)]u0dt
∥∥∥∥ .

Since ̂(gα−β ∗ Sα,β,µ)(z) = 1
zα−β Ŝα,β,µ(z) =

1
z
zβ

h(z)h(z)(h(z)−A)
−1, for all Re(z) > 0, and by (4.2) and

(4.3) we can write ̂(gα−β ∗ Sα,β,µ)(z) = 1
z
zβ

h(z)A
1−ε(h(z)−A)−1Aε+ 1

z
zβ

h(z)I. By the inversion theorem for

the Laplace transform, we have

(gα−β ∗ Sα,β,µ)(t)u0 =
1

2πi

∫
Γ

ezt ̂(gα−β ∗ Sα,β,µ)(z)u0dz,

and therefore, for u0 ∈ D(Aε), we have

(gα−β ∗ Sα,β,µ)(tn)u0 − (gα−β ∗ Sα,β,µ)(t)u0 =
1

2πi

∫
Γ

(eztn − ezt)

z

zβ

h(z)
A1−ε(h(z)−A)−1Aεu0dz

+
1

2πi

∫
Γ

(eztn − ezt)

z

zβ

h(z)
u0dz.

The second integral in this last equality is equal to zero, because p(z) := (ezt−eztn )
z and q(z) := p(z) zβ

h(z)

have a unique removable singularity at z = 0. By the inequality (4.4) we have

∥[(gα−β ∗ Sα,β,µ)(tn)− (gα−β ∗ Sα,β,µ)(t)]u0∥ ≤ κ(M + 1)

2π

∫
Γ

|eztn − ezt|
|z|

|z|β

|h(z)|ε+1
∥Aεu0∥|dz|.

By Lemma 4.19 and (4.5)-(4.6) we have∫
Γ

|ezt − eztn |
|z|

|z|β

|h(z)|ε+1
|dz| ≤

(
2

µ

)1+ε

(t− tn)
∫
Γ

|et0z|+ |et1z|
|z|βε

|dz| ≤
(
2

µ

)ε+1

(t− tn)Cα(tβε−1
0 + tβε−1

1 ).
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Since βε− 1 < 0 and 0 < tn < t0 < t1 we have tβε−1
1 < tβε−1

0 < tβε−1
n and we get

∥[(gα−β ∗ Sα,β,µ)(tn)− (gα−β ∗ Sα,β,µ)(t)]u0∥ ≤ κ(M + 1)

π

(
2

µ

)ε+1

Cα(t− tn)t
βε−1
n ∥Aεu0∥.

Therefore, by (4.7) and (4.8) we have

I2 ≤ D2τt
βε−1
n ∥Aεu0∥,

where D2 := µκ(M+1)
π

(
2
µ

)ε+1

Cα.

Next, we estimate I3. Since

[(g1 ∗ Sα,β,µ)(tn)− τ(k1τ ⋆ Sα,β,µ)
n(t)]u1 =

∫ ∞

0

ρτn(t)[(g1 ∗ Sα,β,µ)(tn)− (g1 ∗ Sα,β,µ)(t)]u1dt,

and ̂(g1 ∗ Sα,β,µ)(z) = 1
z Ŝα,β,µ(z) =

1
z
zα−1

h(z) h(z)(h(z)−A)−1, for all Re(z) > 0, we have by (4.2) that

[(g1 ∗ Sα,β,µ)(tn)− (g1 ∗ Sα,β,µ)(t)]u1 =
1

2πi

∫
Γ

(eztn − ezt)

z

zα−1

h(z)
A1−ε(h(z)−A)−1Aεu1dz

+
1

2πi

∫
Γ

(eztn − ezt)

z

zα−1

h(z)
u1dz

=: J1 + J2.

Since q(z) := (eztn−ezt)
z · z

α−1

h(z) = (eztn−ezt)
z2+β−α · 1

zα−β+µ
has a unique removable singularity at z = 0, the

integral J2 is equal to zero.
On the other hand, by (4.4), (4.5) and (4.6) we have

∥J1∥ ≤ κ(M + 1)

2π

∫
Γ

|eztn − ezt|
|z|

|z|α−1

|h(z)|ε+1
∥Aεu1∥|dz|

≤ κ(M + 1)

2π

(
2

µ

)ε+1

(t− tn)

∫
Γ

(|ezt0 |+ |ezt1 |) 1

zβ(ε+1)−α+1
∥Aεu1∥|dz|.

Since 1 < β(ε+1) < α and α > 1, we obtain 0 < β(ε+1)−α+1 < 1, and the Lemma 4.19 implies that

∥J1∥ ≤ κ(M + 1)

2π

(
2

µ

)ε+1

Cα(t− tn)(t
β(ε+1)−α
0 + t

β(ε+1)−α
1 )∥Aεu1∥.

The condition 1 < β(ε+ 1) < α implies that t
β(ε+1)−α
1 < t

β(ε+1)−α
0 < t

β(ε+1)−α
n and thus

∥J1∥ ≤ κ(M + 1)

π

(
2

µ

)ε+1

Cα(t− tn)t
β(ε+1)−α
n ∥Aεu1∥

≤ κ(M + 1)

π

(
2

µ

)ε+1

CαT
β−α+1(t− tn)t

βε−1
n ∥Aεu1∥,

because β − α+ 1 > 0. By (4.7) we conclude that

I3 ≤
∫ ∞

0

ρτn(t)∥(g1 ∗ Sα,β,µ)(tn)− (g1 ∗ Sα,β,µ)(t)∥u1dt

≤ κ(M + 1)

π

(
2

µ

)ε+1

CαT
β−α+1τtβε−1

n ∥Aεu1∥

= D3τt
βε−1
n ∥Aεu1∥,

where D3 := κ(M+1)
π

(
2
µ

)ε+1

CαT
β−α+1.
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Now, we estimate I4. Since ̂(gα−β+1 ∗ Sα,β,µ)(z) = 1
zα−β+1 Ŝα,β,µ(z) = zβ−2(h(z)−A)−1, for all Re(z) >

0, by Theorem 2.9 we have

I4 ≤ µ

∫ ∞

0

ρτn(t)∥[(gα−β+1 ∗ Sα,β,µ)(tn)− (gα−β+1 ∗ Sα,β,µ)(t)]u1∥dt.

By the inversion theorem for the Laplace transform and (4.2) we get

[(gα−β+1 ∗ Sα,β,µ)(tn)− (gα−β+1 ∗ Sα,β,µ)(t)]u1 =
1

2πi

∫
Γ

(eztn − ezt)

z

zβ−1

h(z)
A1−ε(h(z)−A)−1Aεu1dz

+
1

2πi

∫
Γ

(eztn − ezt)

z

zβ−1

h(z)
u1dz.

The inequalities (4.4), (4.5) and (4.6) imply that

∥[(gα−β+1 ∗ Sα,β,µ)(tn)− (gα−β+1 ∗ Sα,β,µ)(t)]u1∥ ≤ κ(M + 1)

2π

∫
Γ

|eztn − ezt|
|z|

|z|β−1

|h(z)|ε+1
∥Aεu1∥|dz|

+
1

2π

∫
Γ

|eztn − ezt|
|z|

|z|β−1

|h(z)|
∥u1∥|dz|

≤ κ(M+1)

2π
(t− tn)

(
2

µ

)ε+1∫
Γ

|ezt0 |+ |ezt1 |
|z|βε+1

∥Aεu1∥|dz|

+
1

2π

(
2

µ

)
(t− tn)

∫
Γ

(|ezt0 |+ |ezt1 |) 1

|z|
∥u1∥|dz|.

Since ∥u1∥ ≤ ∥Aεu1∥, the Lemma 4.19 implies that

∥[(gα−β+1 ∗ Sα,β,µ)(tn)− (gα−β+1 ∗ Sα,β,µ)(t)]u1∥ ≤ κ(M + 1)

2π

(
2

µ

)ε+1

(t− tn)Cα(t
βε
0 + tβε1 )∥Aεu1∥

+
1

π

(
2

µ

)
(t− tn)Cα∥Aεu1∥.

Moreover, since βε > 0 and t0 < t1 < t we get tβε0 < tβε and tβε1 < tβε, which implies that

∥[(gα−β+1 ∗ Sα,β,µ)(tn)− (gα−β+1 ∗ Sα,β,µ)(t)]u1∥ ≤ κ(M + 1)

π

(
2

µ

)ε+1

(t− tn)Cαt
βε∥Aεu1∥

+
1

π

(
2

µ

)
(t− tn)Cα∥Aεu1∥.

Therefore,

I4 ≤ µ

∫ ∞

0

ρτn(t)∥[(gα−β+1 ∗ Sα,β,µ)(tn)− (gα−β+1 ∗ Sα,β,µ)(t)]u1∥dt

≤ µκ(M + 1)

π

(
2

µ

)ε+1

Cα

∫ ∞

0

ρτn(t)(t− tn)t
βε∥Aεu1∥dt+

2

π
Cα

∫ ∞

0

ρτn(t)(t− tn)∥Aεu1∥dt.

Now, an easy computation shows that for all η > 0

(4.9)

∫ ∞

0

ρτn(t)t
ηdt =

τη

n!
Γ(n+ η + 1),

for all n ∈ N, and therefore∫ ∞

0

ρτn(t)(t− tn)t
ηdt =

τη+1

n!
Γ(n+ η + 2)− τη

n!
Γ(n+ η + 1)tn =: cηn.
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Now, cηn can be written as

τη+1

n!
Γ(n+ η + 2)− τη

n!
Γ(n+ η + 1)tn = τ(η + 1)(n+ η)tηn

Γ(n+ η)

Γ(n+ 1)

1

nη
.

Since Γ(n+η)
Γ(n+1) < nη−1 for all 0 < η < 1 and n ∈ N0 (see for instance [10]), we have

cηn < τ(η + 1)(n+ η)tηnn
η−1 1

nη
= τ(η + 1)tηn

(
1 +

η

n

)
≤ τ(η + 1)2tηn.

for all n ∈ N. If η = βε, then the hypothesis implies that cβεn ≤ τ(βε + 1)2tβεn = τtn(βε + 1)2tβε−1
n ≤

τ(βε+ 1)2Ttβε−1
n . This last inequality and (4.7) imply that

I4 ≤ µκ(M + 1)

π

(
2

µ

)ε+1

Cαc
βε
n ∥Aεu1∥+

2

π
Cατ∥Aεu1∥

≤ µκ(M + 1)

π

(
2

µ

)ε+1

Cα(βε+ 1)2Tτtβε−1
n ∥Aεu1∥+

2

π
CαT

1−βετtβε−1
n ∥Aεu1∥.

We conclude that

I4 ≤ D4τt
βε−1
n ∥Aεu1∥,

where the constant D4 is defined by D4 :=

(
µκ(M+1)

π

(
2
µ

)ε+1

Cα(βε+ 1)2T + 2
πCαT

1−βε
)
.

Finally, we estimate I5. By [23, Lemma 2.7] we can write

I5 =

∥∥∥∥∫ ∞

0

ρτn(t)[(gα−1 ∗ Sα,β,µ ∗ f)(t)− (gα−1 ∗ Sα,β,µ ∗ f)(tn)]dt
∥∥∥∥ .

Moreover, we have

(gα−1 ∗ Sα,β,µ ∗ f)(t)−(gα−1 ∗ Sα,β,µ ∗ f)(tn)=
∫ tn

0

[(gα−1 ∗ Sα,β,µ)(t− r)− (gα−1 ∗ Sα,β,µ)(tn − r)]f(r)dr

+

∫ t

tn

(gα−1 ∗ Sα,β,µ)(t− r)f(r)dr

:= J1 + J2.

In order to estimate J1 we observe that ̂(gα−1 ∗ Sα,β,µ)(z) = 1
zα−1 Ŝα,β,µ(z) = (h(z) − A)−1, for all

Re(z) > 0, which implies by (4.2) that

(gα−1 ∗ Sα,β,µ)(t)x− (gα−1 ∗ Sα,β,µ)(s)x =
1

2πi

∫
Γ

(ezt − ezs)

h(z)
A1−ε(h(z)−A)−1Aεxdz

+
1

2πi

∫
Γ

(ezt − ezs)

h(z)
xdz,

for all x ∈ D(Aε) and t > s > 0. By (4.4) and (4.5) we obtain

∥(gα−1 ∗ Sα,β,µ)(t)x− (gα−1 ∗ Sα,β,µ)(s)x∥ ≤ κ(M + 1)

2π

∫
Γ

|ezt − ezs|
|h(z)|ε+1

∥Aεx∥|dz|

+
1

2π

∫
Γ

|ezt − ezs|
|h(z)|

∥Aεx∥|dz|

≤ κ(M + 1)

2π

(
2

µ

)ε+1 ∫
Γ

|ezt − ezs|
|z|

1

|z|β(ε+1)−1
∥Aεx∥|dz|

+
1

2π

(
2

µ

)∫
Γ

|ezt − ezs|
|z|

1

|z|β−1
∥Aεx∥|dz|.
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The generalized mean value implies the existence of t0, t1 with 0 < s < t0 < t1 < t such that |ezt−ezs|
|z| ≤

(t− s) (|et0z|+ |et1z|) . Hence, by Lemma 4.19 we get

∥(gα−1 ∗ Sα,β,µ)(t)x− (gα−1 ∗ Sα,β,µ)(s)x∥ ≤ κ(M + 1)

2π

(
2

µ

)ε+1

Cα(t− s)(t
β(ε+1)−2
0 + t

β(ε+1)−2
1 )∥Aεx∥

+
1

µπ
Cα(t− s)(tβ−2

0 + tβ−2
1 )∥Aεx∥.

Since 1 < β(ε+ 1) < α, β > 1, and 0 < s < t0 < t1 < t we obtain

∥(gα−1 ∗ Sα,β,µ)(t)x− (gα−1 ∗ Sα,β,µ)(s)x∥ ≤ κ(M + 1)

π

(
2

µ

)ε+1

Cα(t− s)sβ(ε+1)−2∥Aεx∥

+
2

µπ
Cα(t− s)sβ−2∥Aεx∥.

Replacing t by t− r and s by tn − r we obtain

∥J1∥ ≤ κ(M + 1)

π

(
2

µ

)ε+1

Cα(t− tn)

∫ tn

0

(tn − r)β(ε+1)−2∥Aεf(r)∥dr

+
2

µπ
Cα(t− tn)

∫ tn

0

(tn − r)β−2∥Aεf(r)∥dr

≤ κ(M + 1)

π

(
2

µ

)ε+1

Cα(t− tn)∥f∥ε
∫ tn

0

(tn − r)β(ε+1)−2dr +
2

µπ
Cα(t− tn)∥f∥ε

∫ tn

0

(tn − r)β−2dr.

Next, we notice that for γ > 0, we have
∫ t
0
(t − r)γ−1dr = Γ(γ)(g1 ∗ gγ)(t) = Γ(γ)gγ+1(t) = tγ

γ , and

therefore,∫ tn

0

(tn − r)β(ε+1)−2dr =
t
β(ε+1)−1
n

β(ε+ 1)− 1
≤ T β

tβε−1
n

β(ε+ 1)− 1
,

∫ tn

0

(tn − r)β−2dr =
tβ−1
n

β − 1
≤ T β(1−ε)

β − 1
tβε−1
n .

Therefore,

∥J1∥ ≤ κ(M + 1)

π

(
2

µ

)ε+1

Cα(t− tn)∥f∥εT β
tβε−1
n

β(ε+ 1)− 1
+

2

µπ
Cα(t− tn)∥f∥ε

T β(1−ε)

β − 1
tβε−1
n .

By (4.7) we get∫ ∞

0

ρτn(t)

∫ tn

0

∥[(gα−1 ∗ Sα,β,µ)(t− r)− (gα−1 ∗ Sα,β,µ)(tn − r)]f(r)∥drdt ≤ C5τ∥f∥εtβε−1
n ,

where

C5 :=
κ(M + 1)

π

(
2

µ

)ε+1

Cα
T β

β(ε+ 1)− 1
+

2

µπ
Cα

T β(1−ε)

β − 1
.

Now, to estimate J2 we notice that for t > 0 and x ∈ D(Aε) we have as in (4.10) that

(gα−1 ∗ Sα,β,µ)(t)x =
1

2πi

∫
Γ

ezt

h(z)
A1−ε(h(z)−A)−1Aεxdz +

1

2πi

∫
Γ

ezt

h(z)
xdz.

The inequalities (4.4)-(4.5) and Lemma 4.19 show that

∥(gα−1 ∗ Sα,β,µ)(t)x∥ ≤ κ(M + 1)

2π

∫
Γ

|ezt|
|h(z)|ε+1

∥Aεx∥|dz|+ 1

2π

∫
Γ

|ezt|
|h(z)|

∥x∥|dz|

≤ κ(M + 1)

2π
Cα

(
2

µ

)ε+1

tβ(ε+1)−1∥Aεx∥+ 1

2π

(
2

µ

)
tβ−1∥Aεx∥.
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Therefore,∫ t

tn

∥(gα−1 ∗ Sα,β,µ)(t− r)f(r)∥dr ≤ κ(M + 1)

2π
Cα

(
2

µ

)ε+1

∥f∥ε
∫ t

tn

(t− r)β(ε+1)−1dr

+
1

2π

(
2

µ

)
∥f∥ε

∫ t

tn

(t− r)β−1dr.

Now, we observe that∫ t

tn

(t− r)β(ε+1)−1dr =

∫ t

0

(t− r)β(ε+1)−1dr −
∫ tn

0

(t− r)β(ε+1)−1dr,

and ∫ t

0

(t− r)β(ε+1)−1dr =
1

β(ε+ 1)
tβ(ε+1),

for all t ≥ 0. Moreover, the function x 7→ xβ(ε+1)−1 is increasing and for tn ≤ t we obtain∫ t

tn

(t− r)β(ε+1)−1dr =
1

β(ε+ 1)
tβ(ε+1) −

∫ tn

0

(t− r)β(ε+1)−1dr ≤ 1

β(ε+ 1)
(tβ(ε+1) − tβ(ε+1)

n ).

And, analogously ∫ t

tn

(t− r)β−1dr ≤ 1

β
(tβ − tβn).

On other hand, by (4.9),
∫∞
0
ρτn(t)(t

β(ε+1) − t
β(ε+1)
n )dt = τβ(ε+1)

n! Γ(n+ β(ε+ 1) + 1)− t
β(ε+1)
n , and

dn :=
τβ(ε+1)

n!
Γ(n+ 1 + β(ε+ 1)) = ττβ(ε+1)−1Γ(n+ 1 + β(ε+ 1)− 1)

Γ(n+ 2)
(n+ 1)(n+ β(ε+ 1))

< tntn+1t
β(ε+1)−2
n+1 + β(ε+ 1)τt

β(ε+1)−1
n+1 ,

for all n ∈ N, because 0 < β(ε+1)−1 < 1 and Γ(n+1+η)
Γ(n+2) < (n+1)η−1 for all n ∈ N and 0 < η < 1.Moreover,

the function x 7→ xβ(ε+1)−2 is a decreasing function on [1,∞), and therefore t
β(ε+1)−2
n+1 ≤ t

β(ε+1)−2
n for all

n ∈ N. This implies that

t
β(ε+1)−1
n+1 = (n+ 1)τt

β(ε+1)−2
n+1 ≤ (n+ 1)τtβ(ε+1)−2

n ≤ tβ(ε+1)−1
n + τtβ(ε+1)−2

n ≤ 2tβ(ε+1)−1
n ,

and dn < tntn+1t
β(ε+1)−2
n+1 +β(ε+1)τt

β(ε+1)−1
n+1 ≤ tn+1t

β(ε+1)−1
n +2β(ε+1)τt

β(ε+1)−1
n , for all n ∈ N. Since

0 < tn ≤ T and

tn+1t
β(ε+1)−1
n − tβ(ε+1)

n = tβ(ε+1)
n

(
tn+1 − tn

tn

)
= τtβ(ε+1)−1

n ,

we obtain ∫ ∞

0

ρτn(t)(t
β(ε+1) − tβ(ε+1)

n )dt ≤ (1 + 2β(ε+ 1))τT βtβε−1
n .

Similarly, we can prove that ∫ ∞

0

ρτn(t)(t
β − tβn)dt ≤ (1 + 2β)τT β(1−ε)tβε−1

n .

Therefore,∫ ∞

0

ρτn(t)

∫ t

tn

∥(gα−1 ∗ Sα,β,µ)(t− r)f(r)∥drdt ≤ κ(M + 1)

2πβ(ε+ 1)
Cα

(
2

µ

)ε+1

∥f∥ε(1 + 2β(ε+ 1))τT βtβε−1
n

+

(
1

µπβ

)
∥f∥ε(1 + 2β)τT β(1−ε)tβε−1

n ,
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for all n ∈ N, and we conclude that

∥J2∥ ≤ C ′
5∥f∥εtβε−1

n .

where

C ′
5 :=

κ(M + 1)

2πβ(ε+ 1)
Cα

(
2

µ

)ε+1

(1 + 2β(ε+ 1))T β +

(
1

µπβ

)
(1 + 2β)T β(1−ε).

That is,

I5 ≤ D5∥f∥εtβε−1
n ,

where D5 := C5 + C ′
5. Summarizing,

∥un − u(tn)∥ ≤ (D1 +D2)τt
βε−1
n ∥Aεu0∥+ (D3 +D4)τt

βε−1
n ∥Aεu1∥+D5τt

βε−1
n ∥f∥ε,

and we conclude that the constant C = C(T ) defined by

C := max{D1 +D2, D3 +D4, D5}

satisfies

∥un − u(tn)∥ ≤ Cτtβε−1
n (∥Aεu0∥+ ∥Aεu1∥+ ∥f∥ε),

and the proof is finished. □

5. Some examples

Now, we illustrate the exact solution u(t) at tn to the fractional differential equation (1.2) and the
approximated solution un to the difference equation (3.4) given by Theorem 3.17 by applying the families
of operators {Sα,β,µ(t)}t≥0 and {Snα,β,µ}n∈N0

.

Example 5.22.

Suppose that A = ρI for some ρ ∈ R. Then, the Laplace transform of the family {Sα,β,µ(t)}t≥0 satisfies

Ŝα,β,µ(λ) =
λα−1

λα + µλβ − ρ
,

and, by [16, Formula 17.6], we obtain that

(5.1) Sα,β,µ(t) =

∞∑
j=0

(−µ)jt(α−β)jEj+1
α,(α−β)j+1(ρt

α),

where, for p, q, r > 0, Erp,q(z) is the generalized Mittag-Leffler type function defined by

Erp,q(z) :=

∞∑
j=0

(r)jz
j

j!Γ(pj + q)
, z ∈ C.

Here, (r)j denotes the Pochhammer symbol defined by (r)j =
Γ(r+j)
Γ(r) .

Therefore, the solution u to

(5.2) ∂αt u(t) + µ∂βt u(t) = ρu(t) + f(t), t ≥ 0,

with the initial conditions u(0) = u0, ut(0) = u1 is given by
(5.3)
u(t) = Sα,β,µ(t)u0+µ(gα−β∗Sα,β,µ)(t)u0+(g1∗Sα,β,µ)(t)u1+µ(gα−β+1∗Sα,β,µ)(t)u1+(gα−1∗Sα,β,µ∗f)(t),

where {Sα,β,µ(t)}t≥0 is defined in (5.1).
On the other hand, by [16, Formula 17.6], it follows that for any γ > 0,

(5.4) (gγ ∗ Sα,β,µ)(t) =
∞∑
j=0

(−µ)jt(α−β)j+γEj+1
α,(α−β)j+γ+1(ρt

α), t ≥ 0.



MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATION VIA RESOLVENT FAMILIES AND SEQUENCES 19

By Proposition 2.10 we obtain

(gγ ∗ Sα,β,µ)n =

∫ ∞

0

ρτn(t)(gγ ∗ Sα,β,µ)(t)dt = τ

n∑
j=0

kγτ (n− j)Sjα,β,µ,

where

Sjα,β,µ =

∫ ∞

0

ρτj (t)Sα,β,µ(t)dt.

Using (5.1) and [33, Theorem 5.2], we obtain

Sjα,β,µ =

∞∑
r=0

(−µ)r

j!τ j+1

∫ ∞

0

e−
1
τ tt(α−β)r+jEr+1

α,(α−β)r+1(ρt
α)dt =

∞∑
r=0

∞∑
k=0

(−µ)r (k + r)!

k!r!
k(α−β)r+αk+1
τ (j)ρk,

and, from the semigroup property (2.5), we deduce that

(kγτ ⋆ Sα,β,µ)
n =

n∑
j=0

kγτ (n− j)Sjα,β,µ(5.5)

=
1

τ

∞∑
r=0

∞∑
k=0

(−µ)r (k + r)!

k!r!
k(α−β)r+αk+γ+1
τ (n)ρk, n ∈ N.

By Theorem 3.17, the solution un to the discrete system

(5.6) C∇αun + µC∇βun = Aun + fn,

subject to the initial conditions u0 = u0, u
1 = u1, is given by

(5.7)
un = Snα,β,µu0+µτ(k

α−β
τ ⋆Sα,β,µ)

nu0+τ(k
1
τ ⋆Sα,β,µ)

nu1+µτ(k
α−β+1
τ ⋆Sα,β,µ)

nu1+τ
2(kα−1

τ ⋆Sα,β,µ⋆f)
n,

for n ≥ 2, where for any γ > 0, (kγτ ⋆ Sα,β,µ)
n is given in (5.5).

Now, consider the interval [0, L], L > 0, and the time step size τ = L/N. As the exact and approximated
solutions to (5.2) and (5.6) are expressed in terms of Mittag-Leffler functions (defined as infinite series
by (5.3) and (5.7)), the examples consider finite truncations of these series (M = 80 terms) for both
solutions.

Following [7, Section 5], in our first example, which corresponds to the Bagley-Torvik equation, we set
f(t) = 0 on [0, 30] and α = 2, β = 3/2, µ = 1/2, ρ = −1/2, with initial conditions u(0) = ut(0) = 1. From
(5.3) and (5.4) it follows that the solution u is given by

u(t) =

∞∑
j=0

(−µ)jt(α−β)j
[
Ej+1
α,(α−β)j+1(ρt

α) + µtα−βEj+1
α,(α−β)j+α−β+1(ρt

α)+

tEj+1
α,(α−β)j+2(ρt

α) + µtα−β+1Ej+1
α,(α−β)j+α−β+2(ρt

α)
]
.

In the next example, and following [39, Example 5.2], we take f(t) = cos(t) and α = 3/2, β =
5/4, µ = 0.1, ρ = −0.1. To find an explicit expression to u(t) in (5.3), we just need to determinate

(gα−1 ∗ Sα,β,µ ∗ f)(t). To this end, we begin by expressing f(t) as the series f(t) =
∑∞
q=0

(−1)q

(2q)! t
2q. By

(5.1), we get

(gα−1 ∗ Sα,β,µ ∗ f)(t) =
∞∑
q=0

∞∑
j=0

(−1)q(−µ)j
∫ t

0

(t− s)2q

Γ(2q + 1)
s(α−β)j+α−1Ej+1

α,(α−β)j+α(ρs
α)ds.

Using [33, Theorem 2.4] we deduce that

(5.8)

∫ t

0

(t− s)δ−1

Γ(δ)
sp2−1Eγp1,p2(ρs

α)ds = tδ+p2−1Eγp1,p2+δ(ρt
α),
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for any α, p1, p2, δ > 0, which implies that

(gα−1 ∗ Sα,β,µ ∗ f)(t) =
∞∑
q=0

∞∑
j=0

∞∑
k=0

(−1)q(−µ)j (j + k)!

j!k!

t(α−β)j+α+2q+αk

Γ((α− β)j + α+ αk + 2q + 1)
ρk.

Now, to determinate (un)Nn=1 we need to find (kα−1
τ ⋆ Sα,β,µ ⋆ f)

n. From Proposition 2.10 we have

(kα−1
τ ⋆ Sα,β,µ ⋆ f)

n = τ

n∑
j=0

kα−1
τ (n− j)(Sα,β,µ ∗ f)j = τ

n∑
j=0

kα−1
τ (n− j)

∫ ∞

0

ρτj (t)(Sα,β,µ ∗ f)(t)dt,

and, by (5.1) and (5.8), we get

(Sα,β,µ ∗ f)(t) =
∞∑
q=0

∞∑
r=0

(−1)q(−µ)rt(α−β)r+2q+1Er+1
α,(α−β)r+2q+2(ρt

α).

Multiplying this last equation by ρτj (t) and integrating over [0,∞), we use [16, Formula 11.15] to obtain

(Sα,β,µ ∗ f)j =
∞∑
q=0

∞∑
r=0

∞∑
l=0

(−1)q(−µ)r (r + k)!

r!k!
k(α−β)r+2q+2+αk
τ (j)ρk.

And, by the semigroup property (2.5) and Proposition [23, Proposition 4], we conclude that

τ2(kα−1
τ ⋆ Sα,β,µ ⋆ f)

n = (gα−1 ∗ Sα,β,µ ∗ f)n

=

∞∑
q=0

∞∑
r=0

∞∑
k=0

(−1)q(−µ)r (r + k)!

r!k!
k(α−β)r+2q+1+αk+α
τ (n)ρk.

Figure 3 presents a comparison of the exact solution u and the approximated solution (un)Nn=1 to the
initial value problem defined by (5.2). The exact solution u, given by (5.3), is evaluated at discrete time
points tn = nτ for 1 ≤ n ≤ N , where τ = L/N represents the time step. The approximated solution
(un)Nn=1 is obtained using (5.7). This figure illustrates the results for these functions f, for different
choices of α, β, L, and, respectively, N = 120, 100.

0 5 10 15 20 25 30
α=2, β=1.5, u(0) = 1, ut(0) = 1, f(t) = 0.

−0.5

0.0

0.5

1.0

1.5

2.0 un

u(t)

0 2 4 6 8 10
α=1.5, β=1.25, u(0) = 1/2, ut(0) = 1/2, f(t) = cos(t).

0.5

1.0

1.5

2.0

2.5

3.0 un

u(t)

Figure 3. Solutions u(t) and un for 1 ≤ n ≤ N on [0, L].
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Finally, we compare u(tn) and u
n to obtain pointwise errors on the interval [0, L]. In Figure 4 we show

the absolute error for the same functions f and parameters α, β, µ and ρ previously given.

0 5 10 15 20 25 30
α=2, β=1.5, u(0) = 1, ut(0) = 1, f(t) = 0.

10−4

10−3

|u(tn) − un|

0 2 4 6 8 10
α=1.5, β=1.25, u(0) = 1/2, ut(0) = 1/2, f(t) = cos(t).

10−4

10−3

10−2 |u(tn) − un|

Figure 4. Absolute error |u(tn)− un| for 1 ≤ n ≤ N.

Here we observe the absolute error estimation, by using the method based on resolvent families and
sequences, is consistent with the result given in Theorem 4.21. We observe here a good accuracy using
the sequence of operators {Snα,β,µ}n∈N0 compared with the exact solution given in terms of the resolvent

family {Sα,β,µ(t)}t≥0. Even though the specific examples involve a single variable (scalar case), the method
introduced can also be used in more complex situations, such as when dealing with self-adjoint operators
(see Example 5.23 below).

Example 5.23.

Now, we consider the following fractional diffusion-wave equation

(5.9)

 ∂2t u(t, x) + µ∂1+γt u(t, x) = Au(t, x) + f(t, x), x ∈ Ω := (−1, 1), t > 0,
u(0, x) = u0(x),
ut(0, x) = u1(x),

where u0, u1 ∈ L2(Ω), −A is a non-negative and self-adjoint operator on the Hilbert space X = L2(Ω).
If A has a compact resolvent, then σ(A) = {−λm : m ∈ N}, where 0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · with
limm→∞ λm = ∞. If ϕm denotes the normalized eigenfunction associated with λm, then

−Av =

∞∑
m=1

λm⟨v, ϕm⟩L2(Ω)ϕm, for all v ∈ D(A).

Following [39, Example 5.3], we take the operator Au(t, x) = ∂2xu(t, x), the initial conditions u0(x) =
u1(x) = 0, the function f(t, x) = e−t sin(πx), µ = 1 and γ = 1/2.

Multiplying both sides of (5.9) by ϕm(x) and integrating over Ω we get that for every m ∈ N, the
function um(t) := ⟨u(t), ϕm⟩L2(Ω) is a solution of{

u′′m(t) + ∂
3/2
t um(t) = −λmum(t) + e−t, t > 0

um(0) = u′m(0) = 0.
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From (5.3) it follows that
um(t) = (gα−1 ∗ Sα,β,µ ∗ f0)(t),

where f0(t) = e−t and

Sα,β,µ(t) =

∞∑
j=0

(−µ)jt(α−β)jEj+1
α,(α−β)j+1(−λmt

α).

Since f0(t) =
∑∞
q=0

(−t)q
q! we may proceed similarly to Example 5.22 to obtain

um(t) = (gα−1 ∗ Sα,β,µ ∗ f0)(t) =
∞∑
q=0

∞∑
j=0

∞∑
k=0

(−1)q(−µ)j (j + k)!

j!k!

t(α−β)j+α+q+αk

Γ((α− β)j + α+ αk + q + 1)
(−λm)k.

Since

u(t, x) =

∞∑
m=1

um(t)ϕm(x), ∀ t ≥ 0, x ∈ Ω,

we get that the explicit analytical solutions to (5.9) is given by

u(t, x) =

∞∑
m=1

(gα−1 ∗ Sα,β,µ ∗ f0)(t)ϕm(x), ∀ t ≥ 0, x ∈ Ω,

where α = 2, β = 3/2 and µ = 1. Finally, and proceeding as in Example 5.22, we may obtain that

τ2(kα−1
τ ⋆ Sα,β,µ ⋆ f0)

n =
∞∑
q=0

∞∑
j=0

∞∑
k=0

(−1)q(−µ)j (j + k)!

j!k!
k(α−β)j+α+q+1+αk
τ (n)ρk(−λm)k.

and therefore, the solution to the semi-discrete problem

∇2un(x) +C ∇3/2un(x) = Aun(x) + fn(x), x ∈ Ω := (−1, 1), n ∈ N0,

with initial conditions u0(x) = u1(x) = 0, x ∈ Ω, is given by

un(x) =

∞∑
m=1

∞∑
q=0

∞∑
j=0

∞∑
k=0

(−1)q(−µ)j (j + k)!

j!k!
k(α−β)j+α+q+1+αk
τ (n)ρk(−λm)kϕm(x), x ∈ (−1, 1).

6. Appendix

A. Resolvent families. This section provides a summary of the main properties of the resolvent families
and sequences employed throughout this paper.

The following result, similar to the Hille-Yosida Theorem for C0-semigroups, follows directly from [20,
Theorem 3.4].

Theorem A.1. Let A be a closed linear densely defined operator in a Banach space X. Let µ ≥ 0 and
1 < β < α ≤ 2. Then, the following assertions are equivalent.

(1) The operator A is the generator of an (α, β, µ)-resolvent family {Sα,β,µ(t)}t≥0 which satisfies
∥Sα,β,µ(t)∥ ≤ Keνt for all t ≥ 0 and for some constants K > 0 and ν ∈ R.

(2) There exist constants ν ∈ R and K > 0 such that
(a) {λα + µλβ : Reλ > ν} ⊂ ρ (A) and

(b) The mapping λ 7→ H(λ) := λα−1
(
λα + µλβ −A

)−1
satisfies the estimates

∥H(n)(λ)∥ ≤ Kn!

(λ− ν)n+1
,

for all λ > ν and n = 0, 1, 2..., where H(n)(λ) = dnH(λ)
dλn .

Proposition A.2 (Generation). Let µ ≥ 0 and 1 < β < α ≤ 2 and A ∈ Sect(θ,M) where θ = απ
2 . If

(α− β) ≤ 1, then A generates an (α, β, µ)-resolvent family.
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Proof. By Theorem A.1 we need to find constants K > 0 and ν ∈ R satisfying condition (2). If fact, for
λ ∈ C we define h (λ) := λα + µλβ . Let λ = reiϕ with |ϕ| < π

2 and r > 0. We may assume that ϕ ≥ 0
without any restriction. Then

arg(h(reiϕ)) = Im(ln(h(reiϕ))) = Im

∫ ϕ

0

d

dt
ln(h(reit))dt = Im

∫ ϕ

0

h′(reit)ireit

h(reit)
dt.

Since λh′(λ)
h(λ) = (α − β) λα

λα+µλβ + β, and cos(ϕ(α − β)) > 0 we obtain |rα−βeiϕ(α−β)|
|rα−βeiϕ(α−β)+µ| ≤ 1 for all r > 0

and therefore

| arg(h(λ))| ≤
∫ ϕ

0

(
(α− β)

|rα−βeiϕ(α−β)|
|rα−βeiϕ(α−β) + µ|

+ β

)
dt ≤ αϕ <

απ

2
= θ.

As A is sectorial operator, h(λ) ∈ Sθ for all λ > ν := 0, and therefore h(λ) ∈ ρ(A). For such λ we define

H(λ) := λα−1 (h(λ)−A)
−1
. Then, H(λ) = λα−1−β

λα−β+µ
h(λ)(h(λ)−A)−1. Since (α− β) ≤ 1, A ∈ Sect(θ,M)

and g(λ) ∈ ρ(A), we obtain

(A.1) ∥λH(λ)∥ ≤ |λα−β |
|λα−β + µ|

|h(λ)| ∥(h(λ)−A)−1∥ ≤M.

On the other hand, λ2H ′(λ) = (α− 1)λH(λ)−α(λH(λ))2−βµλβ−αλH(λ)λH(λ). From (A.1) we obtain
that ∥λβ−αλH(λ)∥ ≤ M

|λα−β+µ| , which implies

(A.2) ∥λ2H ′(λ)∥ ≤ (α− 1)M + αM2 + βµ
M

|λα−β + µ|
M ≤ (α− 1)M + αM2 + βM2 =: K,

for all λ > 0. From (A.1)-(A.2) we conclude that A is the generator of an (α, β, µ)-resolvent family such
that ∥Sα,β,µ(t)∥ ≤ K, by Proposition [30, Proposition 0.1] and Theorem A.1. □

The next theorem gives an asymptotic behavior of ∥Sα,β,µ(t)∥. Its proof follows similarly to [17,
Theorem 4.1] and therefore, we omit the details.

Theorem A.3. Let µ ≥ 0 and 1 < β < α ≤ 2 and A ∈ Sect(θ, ω,M) where θ = απ
2 and ω < 0. If

(α− β) ≤ 1
2 , then there exists a constant C > 0 depending only on α, β and µ such that

(A.3) ∥Sα,β,µ(t)∥ ≤ C

1 + |ω|(tα + µtβ)
, t ≥ 0.
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[31] J. Rashidinia, E. Mohmedi, Approximate solution of the multi-term time fractional diffusion and diffusion-wave equa-

tions, Comp. Applied Mathematics, (2020) 39:216.
[32] A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput.

Math. Appl. 59 (2010), no. 3, 1326-1336.

[33] A. Shukla, J.C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl. 336
(2007) 797-811.

[34] M. Stojanovic, R. Gorenflo, Nonlinear two-term time fractional diffusion-wave problem, Nonlinear Anal. Real World

Applications, 11 (2010), 3512-3523.
[35] P. Torvik, R. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech.,

1984, 51, 294-298.

[36] Z. H. Wang, X. Wang, General solution of the Bagley-Torvik equation with fractional-order derivative, Commun
Nonlinear Sci Numer Simulat., 15 (2010), 1279-1285.
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