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Abstract. In this work, we study time discretization of subdiffusion equations, that is, fractional

differential equations of order α ∈ (0, 1). Assuming that A is the generator of a fractional resolvent family
{Sα,α(t)}t≥0, which allows to write the solution to the subdiffusion equation ∂α

t u(t) = Au(t) + f(t) as

a variation of constants formula, we find an interesting connection between {Sα,α(t)}t≥0 and a discrete

resolvent family {Sn
α,α}n∈N and then, by using the properties of {Sα,α(t)}t≥0, we study the existence

of solutions to the discrete subdiffusion equation C∇αun = Aun + fn, n ∈ N, where, based on the

backward Euler method for a τ > 0 given, C∇αun is an approximation of ∂α
t u(t) at time tn := τn.

We study simultaneously the fractional derivative in the Caputo and Riemann-Liouville sense. We also

provide error estimates and some experiments to illustrate the results.

1. Introduction

Let A be a closed linear operator defined in a Banach space X. The well known theory of C0-semigroups
of linear operators plays a fundamental role in the existence of solutions to the abstract differential
equation of first-order u′(t) = Au(t) + f(t), because its solution is given in terms of the variation of
constants formula

u(t) = T (t)u(0) +

∫ t

0

T (t− s)f(s)ds,

where {T (t)}t≥0 is the C0-semigroup generated by A, see for instance [17]. The notion of C0-semigroup
can be seen as a particular case of a more general concept: the resolvent families of operators. This
concept was introduced by Da Prato and Ianelli in [15, Definition 1] as an extension of the notion of
C0-semigroups of operators to study the existence of mild solutions to the integro-differential equation

u′(t) =
∫ t
0
k(t−s)Au(s)ds+f(t), for t ≥ 0, under the initial condition u(0) = u0 ∈ X, where k ∈ L1

loc(R+),
f ∈ C([0, T ], X) and A is a closed linear operator which generates a resolvent family {U(t)}t≥0. The
solution to this integro-differential equation is given again in terms of its resolvent family by

u(t) = U(t)u0 +

∫ t

0

U(t− s)f(s)ds.

These examples of families of operators show that the solution to certain abstract equations can be written
in terms of those families. For this reason, the general theory of resolvent families, which allows to study
the existence of solutions (and their properties) to a wide class of abstract equations, including Volterra
equations [22, 52], abstract second order equations [5, 56], fractional differential equations [33, 34], among
other, has had a rapid developed during the last two decades.

Fractional subdiffusion equations appear in many problems in physics and biological sciences, such
as anomalous diffusion, fractional generalization of the kinetic equation, random walks, fluid flow, rhe-
ology, electrical networks, control theory of dynamical systems, viscoelasticity, chemical physics, signal
processing, among other, see for instance [4, 24, 31, 45].

Again, to study the existence of solutions to fractional differential equations, a crucial tool are the
fractional resolvent families, see [7, 8, 10, 16, 33, 34, 35, 50, 51, 57] and the references therein. More
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concretely, if 0 < α < 1 and if we consider the subdiffusion equations

∂αt u(t) = Au(t) + f(t), t ≥ 0, u(0) = u0,(1.1)

and
R∂αt u(t) = Au(t) + f(t), t ≥ 0, (g1−α ∗ u)(0) = u0,(1.2)

where ∂αt and R∂αt denote, respectively, the Caputo and the Riemann-Liouville fractional derivatives, f
is a suitable function, gβ is the function defined by gβ(t) = tβ−1/Γ(β) (here Γ(·) denotes the Gamma
function and β > 0), A is a closed and linear operator defined on X, (typically A is the second order
operator), and x belongs to X, then the solutions to Problems (1.1)–(1.2) can be written, respectively,
in terms of a variation of constants formula as

u(t) = Sα,1(t)u0 +

∫ t

0

Sα,α(t− s)f(s)ds,(1.3)

and

u(t) = Sα,α(t)u0 +

∫ t

0

Sα,α(t− s)f(s)ds,(1.4)

where, for α, β > 0, Sα,β(t) is the fractional resolvent family defined by

Sα,β(t) :=
1

2πi

∫
γ

eλtλα−β(λα −A)−1dλ, t ≥ 0.

Here, γ is a suitable complex path where the resolvent operator (λα−A)−1 is well defined. The function
Sα,β(t) corresponds to a generalization of the scalar Mittag-Leffler function, introduced by Mittag-Leffler
and Wiman [18, 58, 59], which is defined by

(1.5) Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
Ha

eµµα−β(µα − z)−1dµ, α, β > 0, z ∈ C,

where, Ha is a Hankel path, i.e. a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |z|1/α
counterclockwise.

There are important connections between resolvent families and the existence of solutions to fractional
differential equations, see for instance [11, 12, 13, 32, 38, 46, 47, 48, 53] and the references therein.
More specifically, in [11, 12, 13] the authors study the behavior of the resolvent family associated to the
fractional differential equation ∂αt u(t) = Au(t) + f(t), where 1 < α < 2, A is sectorial operator and f
is a suitable function, and then, the authors obtain the asymptotic behavior of a time discretization of
this equation based on the backward Euler method for τ > 0. On the other hand, in [46, 47, 48, 53]
the authors study discretizations in time of integro-differential equations in Banach spaces, which can
be seen as an integral version of some fractional differential equations. See also the Monograph [9] for a
general study of discretizations of integro-differential equations. More recently, in [38] the author shows
the existence of solutions to the Caputo fractional difference equation

C∆
αun = Aun+1, n ∈ N,(1.6)

with the initial condition u0 = u0 ∈ D(A), where 0 < α < 1, the operator C∆
αun is an approximation of

the Caputo fractional derivative ∂αt u(t) (at time t = n) which is defined by

C∆
αun :=

n∑
j=0

Γ(1− α+ n− j)

Γ(1− α)Γ(n− j + 1)
(uj+1 − uj),

where uj := 1
j!

∫∞
0
e−ttju(t)dt. The solution to (1.6) is given by un = Snα,1(I −A)u0, where {Sα,1(t)}t≥0

is the resolvent family given in (1.3) and Snα,1 = 1
n!

∫∞
0
e−ttnSα,1(t)dt, for all n ∈ N.

The study of existence of solutions to fractional difference equations of Caputo and Riemann-Liouville
type has been studied widely in the last years, see for instance the interesting papers [3, 6, 20] and the
references given there. However, these discretizations for the Caputo and Riemann-Liouville fractional
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derivatives lack the time step τ > 0. On the other hand, the authors in [27] and [39] study lp-discrete
maximal regularity of fractional evolution equations for the Caputo and Riemann-Liouville fractional
derivatives on Banach space with the UMD property. See also [25, 26, 28, 29, 40] for different schemes
of approximation of fractional models.

In this work, we give a discretization in time to equations (1.1) and (1.2) based on the backward
Euler convolution method for τ > 0 (see for instance [43, 44]). Here, by assuming that A is generator
of a resolvent family {Sα,α(t)}t≥0, we study a strong connection between this resolvent family and the
existence of solutions to the discrete equations for the Caputo and Riemann-Liouville derivative

(1.7) C∇αun = Aun + fn, n ∈ N and (R∇αu)n = Aun + fn, n ∈ N.

Moreover, we show that the solution to these discrete fractional difference equations can be written
as variation of constants formula, analogously to (1.3) and (1.4), but in terms of a discrete fractional
resolvent family {Snα,α}n∈N.

The paper is organized as follows. In Section 2 we give the Preliminaries on resolvent families and con-
tinuous and discrete fractional calculus. Here, given a time step size τ > 0, we present new discretizations

C∇αun and R∇αun to ∂αt u and R∂αt u, respectively. Moreover, we study the main properties of C∇αun

and R∇αun, in Theorem 2.7 we find an interesting connection between C∇αun and ∂αt u and we study
the connection between the continuous and the discrete resolvent family {Sα,α(t)}t≥0 and {Snα,α}n∈N,
respectively. The Section 3 is devoted to the numerical scheme for (1.3) and (1.4). Here, by assuming
that A is a sectorial operator we study the existence of solutions to (1.7). Moreover, we show that if A
is the generator of a resolvent family {Sα,α(t)}t≥0, then the fractional difference equations (1.7) have a
solution given in terms of the discrete resolvent family {Snα,α}n∈N. In Section 4 we study error estimates of
the continuous and discrete solution and in Section 5 we provide some numerical experiments to illustrate
the theoretical results.

2. Fractional resolvent families and continuous and discrete fractional calculus

2.1. Resolvent families. Let X ≡ (X, ∥ · ∥) be a Banach space. The Banach space of all bounded and
linear operators from X into X is denoted by B(X). If A is a closed linear operator on X, its resolvent set
is denoted by ρ(A), and the resolvent operator is defined by R(λ,A) = (λ − A)−1 for all λ ∈ ρ(A). The
spectrum of A is defined by σ(A) := C \ ρ(A). A family of operators {S(t)}t≥0 ⊂ B(X) is exponentially
bounded if there exist real numbers M > 0 and ω ∈ R such that

(2.8) ∥S(t)∥ ≤Meωt, t ≥ 0.

We notice that if {S(t)}t≥0 ⊂ B(X) is exponentially bounded, then the Laplace transform of S(t)

Ŝ(λ)x :=

∫ ∞

0

e−λtS(t)xdt

exists for all Reλ > ω. If ω = 0, then {S(t)}t≥0 ⊂ B(X) is bounded for all t ≥ 0.

Definition 2.1. [2] Let α, β > 0 be given. Let A be a closed linear operator with domain D(A) defined
in a Banach space X. The operator A is called the generator of an (α, β)-resolvent family if there exist
ω ≥ 0 and a strongly continuous function Sα,β : R+ → B(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−β(λα −A)−1x =

∫ ∞

0

e−λtSα,β(t)xdt,

for all Reλ > ω and x ∈ X. The family {Sα,β(t)}t≥0 is also called the (α, β)-resolvent family generated
by A.

If we compare Definition 2.1 with the concept of (a, k)-regularized families introduced in [36] we observe
that the function t 7→ Sα,β(t), for t ≥ 0, is a (gα, gβ)-regularized family. Moreover, the function Sα,β(t)
satisfies the following functional equation (see [2, 34, 41]):

Sα,β(s)(gα ∗ Sα,β)(t)− (gα ∗ Sα,β)(s)Sα,β(t) = gβ(s)(gα ∗ Sα,β)(t)− gβ(t)(gα ∗ Sα,β)(s),
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for all t, s ≥ 0. Moreover, a closed operator A generates a unique (α, β)-resolvent family. We recall that

for µ > 0, gµ defines the function gµ(t) := tµ−1

Γ(µ) for all t ≥ 0. We notice that gβ behaves like a delta

function in the sense that gβ ∗ f → f as β → 0 and therefore, we define naturally (g0 ∗ f)(t) := f(t) for
all t ≥ 0.

Moreover, if an operator A with domain D(A) is the infinitesimal generator of a resolvent family
Sα,β(t), then for all x ∈ D(A) we have

Ax = lim
t→0+

Sα,β(t)x− gβ(t)x

gα+β(t)
.

For example, if α = β = 1, then S1,1(t) corresponds to a C0-semigroup, if α = 2, β = 1, then S2,1(t) is
a cosine family, and if α = β = 2, then S2,2(t) is a sine family. See [5] for further details. If α > 0 and
β = 1, then Sα,1(t) is the solution operator introduced in [7, Definition 2.3]. The following result gives
some properties of Sα,β(t). Its proof can be deduced from [36, Lemma 2.2 and Proposition 2.5] and the
details are in [10, Proposition 3.10] and [1].

Proposition 2.2. Let {Sα,β(t)}t≥0 be the (α, β)-resolvent family generated by A. Then,

(1) lim
t→0+

Sα,β(t)x

gβ(t)
= x, for all x ∈ X.

(2) For all x ∈ D(A) and t ≥ 0 we have Sα,β(t)x ∈ D(A) and ASα,β(t)x = Sα,β(t)Ax.

(3) For x ∈ X and t ≥ 0 we have
∫ t
0
gα(t− s)Sα,β(s)xds ∈ D(A) and

(2.9) Sα,β(t)x = gβ(t)x+A

∫ t

0

gα(t− s)Sα,β(s)xds.

We say that an operator A : D(A) ⊂ X → X is said to be sectorial of angle θ if there are constants
ω ∈ R, M > 0 and θ ∈ (π/2, π) such that ρ(A) ⊃ Sθ,ω := {z ∈ C : z ̸= ω : | arg(z − ω)| < θ} and

∥(z −A)−1∥ ≤ M

|z − ω|
for all z ∈ Sθ,ω.

In order to simplify the presentation of the results, we may assume, without lost of generality, that ω = 0.
If not so we can take the operator A − ωI, which is also sectorial (here I denotes the identity operator
in X). In that case, we write A ∈ Sect(θ,M) and we denote the sector Sθ,0 as Sθ. For further details on
sectorial operators we refer to the reader to [17, 23].

Let A be a linear and closed operator whose resolvent set contains the negative half-line (−∞, 0], (for
example, a sectorial operator with ω ≥ 0.) Given 0 ≤ ε ≤ 1, Xε denotes the domain of the fractional
power Aε, that is Xε := D(Aε) endowed with the graph norm ∥x∥ε = ∥Aεx∥ (see for instance [42]). We
notice that X1 corresponds to the domain of A, and X0 to the space X. It is a well known fact that if
0 < ε < 1, and x ∈ D(A), then there exists a constant K ≡ Kε > 0 such that (see [42])

∥Aεx∥ ≤ K∥Ax∥ε∥x∥1−ε.(2.10)

2.2. Continuous and discrete fractional calculus. Now, we review some preliminaries on fractional
calculus. For α > 0, let m = ⌈α⌉ be the smallest integer m greater than or equal to α. The Caputo
fractional derivative of order α of a Cm-differentiable function f : R+ → X is defined by

∂αt f(t) :=

∫ t

0

gm−α(t− s)f (m)(s)ds.

Similarly, the Riemann-Liouville fractional derivative of order α of f : R+ → X is defined by

R∂αt f(t) :=
dm

dtm

∫ t

0

gm−α(t− s)f(s)ds.

We observe that if α = m ∈ N, then ∂mt f and R∂mt f coincide with the usual derivative dmf
dtm of order

m. Moreover, if 0 < α < 1, then ∂α+1
t f(t) = ∂αt (∂

1
t f)(t) ̸= ∂1t (∂

α
t f)(t) and

R∂α+1
t f(t) = ∂1t (

R∂αt f)(t) ̸=
R∂αt (∂

1
t f)(t), unless f(0) = 0. For further details on fractional calculus, we refer to the reader to [49].
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The set of non-negative integer numbers is denoted by N0 and the non-negative real numbers by R+
0 .

For τ > 0 fixed and n ∈ N0, we set

ρτn(t) := e−
t
τ

(
t

τ

)n
1

τn!
.

We notice that ρτn(t) ≥ 0 for all t ≥ 0 and n ∈ N0, and ρτn(t) = τ−1ρn(t/τ) where ρn(t) := e−ttn/n!.
Moreover, an easy computation shows that∫ ∞

0

ρτn(t)dt = 1, for all n ∈ N0.

Let u : R+
0 → X be a bounded and locally integrable function. We define the sequence (un)n by

(2.11) un :=

∫ ∞

0

ρτn(t)u(t)dt, n ∈ N0.

We notice that for small τ > 0, the function ρτn behaves like a delta function at tn := nτ and therefore,
un is an approximation of u(tn).

For the Banach space X, F(R+
0 ;X) denotes the vectorial space consisting of all vector-valued functions

v : R+
0 → X. For n ∈ N we define vn as in (2.11). The backward Euler operator ∇τ : F(R+

0 ;X) →
F(R+

0 ;X) is defined by

∇τv
n :=

vn − vn−1

τ
, n ∈ N.

For m ≥ 2, we define recursively ∇m
τ : F(R+

0 ;X) → F(R+
0 ;X) as

∇m
τ v

n :=

{
∇m−1
τ (∇τv)

n, n ≥ m
0, n < m,

(2.12)

where ∇1
τ ≡ ∇τ and ∇0

τ is the identity operator. The operator ∇m
τ is called the backward difference

operator of order m. We notice that if v ∈ F(R+
0 ;X) then

(∇m
τ v)

n =
1

τm

m∑
j=0

(
m

j

)
(−1)jvn−j , n ∈ N.

Now, we define the sequence

(2.13) kατ (n) := τ

∫ ∞

0

ρτn(t)gα(t)dt, n ∈ N0, α > 0.

An easy computation shows that

(2.14) kατ (n) =
ταΓ(α+ n)

Γ(α)Γ(n+ 1)
= τ

Γ(α+ n)

Γ(n+ 1)
gα(τ), n ∈ N0, α > 0.

The next definitions were introduced in [37, Definitions 2.5, 2.7 and 2.8] in case τ = 1. See also [21,
Chapter 3] and the references therein. We give here the definition for all τ > 0.

Definition 2.3. Let α > 0. The αth−fractional sum of v ∈ F(R;X) is defined by

(2.15) (∇−α
τ v)n :=

n∑
j=0

kατ (n− j)vj , n ∈ N0.

We now introduce the fractional difference operators in the sense of Caputo and Riemann-Liouville.

Definition 2.4. Let α ∈ R+ \ N0. The Caputo fractional backward difference operator of order α,

C∇α : F(R+;X) → F(R+;X), is defined by

(C∇αv)n := ∇−(m−α)
τ (∇m

τ v)
n, n ∈ N,

where m− 1 < α < m.



6 RODRIGO PONCE

Here, as in [21, Chapter 1, Section 1.5] we define by convention

−k∑
j=0

vj = 0,

for all k ∈ N.

Definition 2.5. Let α ∈ R+ \ N0. The Riemann-Liouville fractional backward difference operator of
order α, R∇α : F(R+;X) → F(R+;X), is defined by

(R∇αv)n := ∇m
τ (∇−(m−α)

τ v)n, n ∈ N,

where m− 1 < α < m.

In both definitions, if α ∈ N0, then the fractional backward difference operators C∇α and R∇α are
defined as the backward difference operator ∇α

τ .
We notice that if 0 < α < 1, then

C∇α+1vn = ∇−(2−(α+1))
τ (∇2

τv)
n = ∇−(1−α)

τ (∇τ (∇τv))
n = C∇α(∇1

τv)
n = C∇α(C∇1v)n

and

R∇α+1vn = ∇2
τ (∇−(2−(α+1))

τ v)n = ∇1
τ (∇1

τ (∇−(1−α)
τ v))n = ∇1

τ (
R∇αv)n = R∇1(R∇αv)n,

for all n ∈ N.
However, C∇α+1vn ̸= C∇1(C∇αv)n and R∇α+1vn ̸= R∇α(R∇1v)n. In fact, if v(t) = tv0, where

0 ̸= v0 ∈ X, then ∇1
τv
n = v0 for all n ≥ 1 and ∇2

τv
n = 0 for all n ≥ 2. This implies that for n ≥ 2 we

obtain

C∇α+1vn = ∇−(1−α)
τ (∇2

τv)
n =

n∑
j=2

k1−ατ (n− j)(∇2
τv)

j = 0.

On the other hand,

C∇1(C∇αv)n =
1

τ

(
C∇α

τ v
n −C ∇α

τ v
n−1
)

=
1

τ

 n∑
j=1

k1−ατ (n− j)(∇1
τv)

j −
n−1∑
j=1

k1−ατ (n− 1− j)(∇1
τv)

j


=

1

τ

 n∑
j=1

k1−ατ (n− j)−
n−1∑
j=1

k1−ατ (n− 1− j)

 v0

=
1

τ
k1−ατ (n− 1)v0,

for all n ≥ 2. Since k1−ατ (1) = (1− α)τ1−α, we conclude that if α > 0 and n = 2, then

C∇1(C∇αv)2 = (1− α)τ−αv0.

Therefore, C∇α+1vn ̸= C∇1(C∇αv)n.
Now, if v is the constant vector-valued function v(t) = v0 ∈ X, then ∇1

τv
n = 0 for all n ∈ N and thus

R∇α(∇1v)n = ∇1
τ (∇−(1−α)

τ ∇τv)
n =

1

τ

(
∇−(1−α)
τ (∇τv)

n −∇−(1−α)
τ (∇τv)

n−1
)
.

Since

∇−(1−α)
τ (∇τv)

m =

m∑
j=0

k1−ατ (m− j)(∇1
τv)

j = 0,
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we obtain R∇α(∇1v)n = 0 for all n ≥ 2. On the other hand,

R∇α+1vn = ∇2
τ (∇−(2−(α+1))

τ v)n

=
1

τ2

(
∇−(1−α)
τ vn − 2∇−(1−α)

τ vn−1 +∇−(1−α)
τ vn−2

)
.

Since

∇−(1−α)
τ vm =

m∑
j=0

k1−ατ (m− j)vj =

m∑
j=0

k1−ατ (m− j)v0,

and

k1−ατ (0) = τ1−α, k1−ατ (1) = (1− α)τ1−α and k1−ατ (2) =
(1− α)(2− α)

2
τ1−α,

we obtain for n = 2 and α > 0 that

(R∇α+1v)2 =
1

τ2
(k1−ατ (2)− k1−ατ (1))v0 = −α(1− α)

2τ1+α
v0.

Therefore, R∇α+1vn ̸= R∇α(R∇1v)n. However, there is an interesting connection between the Riemann-
Liouville and Caputo fractional difference operators: if v ∈ F(R+;X) and 0 < α < 1, then

R∇α(∇1v)n = ∇1
τ (∇−(1−α)

τ (∇1v))n =
1

τ

(
∇−(1−α)
τ (∇1v)n −∇−(1−α)

τ (∇1v)n−1
)

=
1

τ

(
C∇αvn − C∇αvn−1

)
= ∇1(C∇αv)n,

for all n ∈ N. We summarize the above properties in the following Proposition.

Proposition 2.6. If 0 < α < 1 and n ∈ N, then

(1) C∇α+1vn = C∇α(∇1v)n,
(2) R∇α+1vn = ∇1(R∇αv)n, and
(3) R∇α(∇1v)n = ∇1(C∇αv)n.

The next result relates the Caputo (respectively, the Riemann-Liouville) fractional derivative and the
Caputo (respectively, the Riemann-Liouville) difference operator. For the Riemann-Liouville fractional
derivative, the case τ = 1 can be found in [38].

Theorem 2.7. Let 0 < α < 1.

(1) If u : [0,∞) → X is differentiable and bounded, then

(2.16)

∫ ∞

0

ρτn(t)∂
α
t u(t)dt = C∇αun,

for all n ∈ N.
(2) If u : [0,∞) → X is locally integrable and bounded, then

(2.17)

∫ ∞

0

ρτn(t)
R∂αt u(t)dt =

R∇αun,

for all n ∈ N.
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Proof. Let n ∈ N. The Fubini’s theorem implies∫ ∞

0

ρτn(t)∂
α
t u(t)dt =

∫ ∞

0

ρτn(t)(g1−α ∗ u′)(t)dt

=

∫ ∞

0

ρτn(t)

∫ t

0

g1−α(t− s)u′(s)dsdt

=

∫ ∞

0

u′(s)

∫ ∞

s

ρτn(t)g1−α(t− s)dtds

=

∫ ∞

0

u′(s)

∫ ∞

0

e−
1
τ (r+s)

(r + s)n

τn
1

τn!
g1−α(r)drds

=

∫ ∞

0

u′(s)e−
s
τ

∫ ∞

0

e−
r
τ

n∑
j=0

(
n

j

)
rn−jsj

1

τn
1

τn!
g1−α(r)drds

=

n∑
j=0

∫ ∞

0

u′(s)e−
s
τ

( s
τ

)j 1

τj!
τ

∫ ∞

0

e−
r
τ

( r
τ

)n−j 1

τ(n− j)!
g1−α(r)drds

=

n∑
j=0

∫ ∞

0

ρτj (s)u
′(s)dsτ

∫ ∞

0

ρτn−j(r)g1−α(r)dr

=

n∑
j=0

k1−ατ (n− j)

∫ ∞

0

ρτj (s)u
′(s)ds.

Since u is a bounded function and

(2.18)
dρτk(t)

dt
=

1

τ

(
ρτk−1(t)− ρτk(t)

)
for all k ≥ 1, we obtain by integration by parts that∫ ∞

0

ρτj (s)u
′(s)ds =

1

τ

(∫ ∞

0

ρτj (s)u(s)ds−
∫ ∞

0

ρτj−1(s)u(s)ds

)
=

1

τ

(
uj − uj−1

)
= (∇1

τv)
j ,

which implies that∫ ∞

0

ρτn(t)∂
α
t u(t)dt =

n∑
j=0

k1−ατ (n− j)(∇1
τv)

j = ∇−(1−α)
τ (∇1

τu)(n) = C∇αun,

and the proof of (2.16) is finished. The proof of (2.17) follows analogously. �

Now, for a family of operators {S(t)}t≥0 ⊂ B(X), we define the sequence

Snx :=

∫ ∞

0

ρτn(t)S(t)xdt, n ∈ N0, x ∈ X.

If c : R+ → C is a continuous and bounded function

cn :=

∫ ∞

0

ρτn(t)c(t)dt, n ∈ N0,

and we define the discrete convolution

(c ⋆ S)n :=

n∑
k=0

cn−kSk, n ∈ N0.

Finally, we recall that for a vector-valued function f : R+ → X, the sequence fn is defined as

fn :=

∫ ∞

0

ρτn(t)f(t)dt, n ∈ N0.

The proof of the following result is given in [38] for τ = 1.
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Theorem 2.8. Let c : R+ → C be Laplace transformable such that ĉ(1/τ) exists, and let {S(t)}t≥0 ⊂
B(X) be strongly continuous and Laplace transformable such that Ŝ(1/τ) exists. Then, for all x ∈ X,∫ ∞

0

ρτn(t)(c ∗ S)(t)xdt = τ(c ⋆ S)nx, n ∈ N0.

Proof. If g : R+
0 → X is a bounded and locally integrable function, then∫ ∞

0

ρτn(t)g(t)dt = τ−1

∫ ∞

0

e−
t
τ

(
t

τ

)n
1

n!
g(t)dt =

τ−1

τn

∫ ∞

0

e−
t
τ
tn

n!
g(t)dt =

τ−1

τn
(−1)n

n!
[ĝ(λ)](n) |λ= 1

τ
,

which implies ∫ ∞

0

ρτn(t)(c ∗ S)(t)xdt =
τ−1

τn
(−1)n

n!
[(̂c ∗ S)(λ)](n)x |λ= 1

τ

=
τ−1

τn
(−1)n

n!
[ĉ(λ)Ŝ(λ)](n)x |λ= 1

τ

=
τ−1

τn
(−1)n

n!

n∑
k=0

(
n

k

)
[c(λ)](n−k)[Ŝ(λ)](k)x |λ= 1

τ
.

Since

[Ŝ(λ)](k)x |λ= 1
τ
=
dkŜ(λ)

dλk
x |λ= 1

τ
= (−1)k

∫ ∞

0

e−
1
τ ttkS(t)xdt = k!(−1)k

∫ ∞

0

e−
1
τ t
tk

k!
S(t)xdt,

we obtain

[Ŝ(λ)](k)x |λ= 1
τ
= k!(−1)kτk+1

∫ ∞

0

ρτk(t)S(t)xdt = k!(−1)kτk+1Skx,

for all k ∈ N0. Similarly, [ĉ(λ)](k) = k!(−1)kτk+1ck, for all k ∈ N0. Therefore,∫ ∞

0

ρτn(t)(c∗S)(t)xdt =
τ−1

τn
(−1)n

n!

n∑
k=0

(
n

k

)
(−1)n−k(n−k)!τn−kτcn−k(−1)kk!τkτSkx = τ

n∑
k=0

cn−kSkx.

�

Since ĝα(λ) =
1
λα , for all Reλ > 0, we obtain

gnα =

∫ ∞

0

ρτn(t)gα(t)dt =
1

τ
kατ (n)

for all n ∈ N, and by Theorem 2.8, we have the following Corollary.

Corollary 2.9. Let α > 0. Let {S(t)}t≥0 ⊂ B(X) be strongly continuous and Laplace transformable such

that Ŝ(1/τ) exists. Then for all x ∈ X,∫ ∞

0

ρτn(t)(gα ∗ S)(t)xdt =
n∑
j=0

kατ (n− j)Sjx, n ∈ N0.

Moreover, since (gα ∗ gβ)(t) = gα+β(t) for all α, β > 0, we obtain by (2.13),(2.14) and Corollary 2.9

kα+βτ (n) = τ

∫ ∞

0

ρτn(t)gα+β(t)dt = τ

∫ ∞

0

ρτn(t)(gα ∗ gβ)(t)dt = τ

n∑
j=0

kατ (n− j)gjβ =

n∑
j=0

kατ (n− j)kβτ (j),

which implies

(2.19) kα+βτ (n) = (gα ⋆ gβ)
n =

n∑
j=0

kατ (n− j)kβτ (j),

for all n ∈ N0.
The proof of the next result follows similarly to the proof of Theorem 2.8. We omit the details.
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Proposition 2.10. Let f : R+ → X be Laplace transformable such that f̂(1/τ) exists, and let {S(t)}t≥0 ⊂
B(X) be strongly continuous and Laplace transformable such that Ŝ(1/τ) exists. Then,∫ ∞

0

ρτn(t)(S ∗ f)(t)xdt = τ(S ⋆ f)nx = τ

n∑
j=0

Sn−jf j , n ∈ N0.

3. Numerical scheme

Let α, β > 0. For n ≥ 1, we define the bounded operators Dn
α,β : X → X by

(3.20) Dn
α,β :=

1

2πi

∫
γ

r(τλ)nλα−β(λα −A)−1dλ,

where r(z) := 1
1−z and γ denotes a suitable path that connects −i∞ and +i∞ with increasing imaginary

part. If fα,β(z) := τβ−1(1 − z)α−β ((1− z)α − ταA)
−1
, then fα,β is a holomorphic operator-valued

mapping on |z| = r < 1, and therefore, Cauchy’s formula implies that

(3.21) fα,β(z) =

∞∑
n=0

aα,βn zn,

where

aα,βn =
1

2πi

∫
|z|=r

τβ−1 (1− z)α−β

zn+1
((1− z)α − ταA)

−1
dz.

It is easy to see that

(3.22) aα,βn = Dn+1
α,β

for all n ≥ 0. Now, we define Fα,β(z) as the Laplace transform of Sα,β(t), that is,

Fα,β(z) :=

∫ ∞

0

e−ztSα,β(t)dt

Let Lnα,β : X → X be the generating operators satisfying

∞∑
n=0

Lnα,βz
n =

1

τ
Fα,β

(
1− z

τ

)
.

An easy computation shows that

1

τ
Fα,β

(
1− z

τ

)
= fα,β(z),

and then, by (3.22), we conclude that

(3.23) Lnα,β = Dn+1
α,β

for all n ∈ N0. As a consequence, we have the following result.

Theorem 3.11. Let α, β > 0. Assume that A is the generator of an (α, β)-resolvent family {Sα,β(t)}t≥0

resolvent family. Then

(3.24) Dn+1
α,β x =

∫ ∞

0

ρτn(t)Sα,β(t)xdt,

for all n ∈ N and x ∈ X, and therefore

Snα,β = Dn+1
α,β .



DISCRETE SUBDIFFUSION EQUATION 11

Proof. Since
∞∑
n=0

Lnα,βz
n =

1

τ
Fα,β

(
1− z

τ

)
=

1

τ

∫ ∞

0

e−
(1−z)
τ tSα,β(t)dt

and

1

τ
e−

(1−z)
τ t =

∞∑
n=0

ρτn(t)z
n,

we obtain
∞∑
n=0

Lnα,βz
n =

∞∑
n=0

∫ ∞

0

ρτn(t)Sα,β(t)dtz
n,

which implies that

Lnα,β =

∫ ∞

0

ρτn(t)Sα,β(t)dt,

for all n ∈ N0, and the result follows from (3.23). �

3.1. Caputo fractional difference equations. Now, for 0 < α < 1, we consider the equation (1.1):

∂αt u(t) = Au(t) + f(t), t ≥ 0,

with the initial condition u(0) = u0. Multiplying this by ρτn(t) and integrating over [0,∞) we obtain by
Theorem 2.7 the backward Euler scheme

(3.25) C∇αun = Aun + fn, n ∈ N,

for all n ∈ N, with the initial condition u0 = u0. We first assume that A is a sectorial operator and
u0 ∈ ker(A), that is, u0 ∈ D(A) and Au0 = 0. By Definition (2.12), (∇1

τu)
0 = 0, which implies that

C∇αu0 = ∇−(1−α)(∇1u)0 = 0. Moreover, if f0 = 0, then we can consider the equation (3.25) for all
n ∈ N0. By definition, we can write

C∇αun = ∇−(1−α)
τ (∇τu)

n =

n∑
j=0

k1−ατ (n− j)(∇1
τu)

j =

n−1∑
j=1

k1−ατ (n− j)(∇1
τu)

j + τ−α(un − un−1),

for all n ∈ N.
Thus, the scheme (3.25) is equivalent to

(3.26) (τ−α −A)un = τ−αun−1 −
n−1∑
j=1

k1−ατ (n− j)(∇1
τu)

j + fn,

for all n ∈ N. We notice that this is an implicit scheme, and to obtain un from un−1, ..., u0 we need
to solve (3.26). To this end, since A is a sectorial operator, we can take τ small enough (for instance
max{0, ω}τα < 1) in order to obtain that (τ−α −A) is invertible.

Now, we will write (3.25) in terms of generating functions. We set for β > 0 and |z| < 1

U(z) :=

∞∑
n=0

unzn, F (z) :=

∞∑
n=0

fnzn, Qβ(z) :=

∞∑
n=0

kβτ (n)z
n =

(
τ

1− z

)β
.

Multiplying (3.25) by zn and summing up in n ∈ N0, we obtain

(3.27)

∞∑
n=0

C∇αunzn = AU(z) + F (z).
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Since
∞∑
n=0

(C∇αun)zn =

∞∑
n=0

∇−(1−α)
τ (∇1

τu)
nzn

=

∞∑
n=0

 n∑
j=0

k1−ατ (n− j)(∇1
τu)

j

 zn

=

( ∞∑
n=0

k1−ατ (n)zn

)( ∞∑
n=0

(∇1
τu)

nzn

)

= Q1−α(z)

∞∑
n=0

(∇1
τu)

nzn.

Now, since (∇1
τu)

0 = 0 we obtain

∞∑
n=0

(∇1
τu)

nzn =
1

τ

∞∑
n=1

(un − un−1)zn =
1

τ

(
(1− z)U(z)− u0

)
.

Hence (3.27) reads (
(1− z)

τ
Q1−α(z)−A

)
U(z) =

1

τ
Q1−α(z)u0 + F (z),

which is equivalent to

(3.28) (I −Qα(z)A)U(z) =
1

1− z
u0 +Qα(z)F (z).

Since A is a sectorial operator, and Re((1 − z)/τ) > 0 for all |z| = r < 1, we obtain that
(
1−z
τ

)α
=

1
Qα(z) ∈ ρ(A), (I −Qα(z)A) is invertible and we can write (3.28) as

(3.29) U(z) =
1

1− z
(I −Qα(z)A)−1u0 +Qα(z)(I −Qα(z)A)−1F (z).

Noticing that Qα(z) =
(

τ
1−z

)α
= τα(1− z)−α, we can write

1

1− z
(I −Qα(z)A)−1 = (1− z)α−1 ((1− z)α − ταA)

−1
= fα,1(z).

By (3.21) we obtain

fα,1(z) =

∞∑
n=0

aα,1n zn,

where, for n ∈ N0,

aα,1n =
1

2πi

∫
|z|=r

(1− z)α−1

zn+1
((1− z)α − ταA)

−1
dz =

1

2πi

∫
|z|=r

1

(1− z)zn+1
(I −Qα(z)A)−1dz.

The relation between aα,1n and Dn
α,1 given in (3.22) gives aα,1n = Dn+1

α,1 for all n ≥ 0 and thus,

(3.30)
1

1− z
(I −Qα(z)A)−1 = fα,1(z) =

∞∑
n=0

Dn+1
α,1 z

n.

On the other hand, since (I−Qα(z)A)−1 is holomorphic on |z| < 1, Qα(z)(I−Qα(z)A)−1 is holomor-
phic as well on |z| < 1. Since,

Qα(z)(I −Qα(z)A)−1 = τfα,α(z) = τ

∞∑
n=0

aα,αn zn = τ

∞∑
n=0

Dn+1
α,α z

n,
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we obtain

(3.31) Qα(z)(I −Qα(z)A)−1F (z) = τ

( ∞∑
n=0

Dn+1
α,α z

n

)( ∞∑
n=0

fnzn

)
= τ

∞∑
n=0

 n∑
j=0

Dn+1−j
α,α f j

 zn.

Replacing (3.30) and (3.31) in (3.29) we obtain

U(z) =

∞∑
n=1

Dn+1
α,1 z

nu0 + τ

∞∑
n=0

 n∑
j=0

Dn+1−j
α,α f j

 zn

which implies that

un = Dn+1
α,1 u

0 + τ

n∑
j=0

Dn+1−j
α,α f j ,

for all n ∈ N. We have proved the following result.

Theorem 3.12. Let A be a sectorial operator in a Banach space X. If u0 ∈ ker(A) and f0 = 0, then the
fractional difference equation

(3.32) C∇αun = Aun + fn, n ∈ N,

with the initial condition u0 = u0, has a unique solution given by

(3.33) un = Dn+1
α,1 u0 + τ

n∑
j=0

Dn+1−j
α,α f j ,

for all n ∈ N.

In the next result, we assume that u0 merely belongs to X, and we show that even if u0 is not in D(A),
we can obtain existence of solutions.

Theorem 3.13. Let τ > 0. Let A be the generator of an (α, α)-resolvent family {Sα,α(t)}t≥0 exponentially
bounded with ∥Sα,α(t)∥ ≤Meωt, where ω < 1

τ . If u
0 ∈ X and f is bounded, then the fractional difference

equation

C∇αun = Aun + fn, n ∈ N,
with the initial condition u0 = u0, has a unique solution given by

(3.34) un = Snα,1u0 + τ(Sα,α ⋆ f)
n,

for all n ∈ N, where Sα,1(t) = (g1−α ∗ Sα,α)(t).

Proof. As in the proof of Theorem 2.8, we obtain Snα,1x ∈ D(A) for all n ∈ N0 and x ∈ X. By Proposition
2.2 we obtain

Sα,1(t)x = x+A

∫ t

0

gα(t− s)Sα,1(s)xds,

for all t ≥ 0 and x ∈ X. Multiplying this equality by ρτj (t) and integrating over [0,∞) we have by
Corollary 2.9 that for all j ≥ 0,
(3.35)

Sjα,1x =

∫ ∞

0

ρτj (t)Sα,1(t)xdt =

∫ ∞

0

ρτj (t)xdt+A

∫ ∞

0

ρτj (t)(gα ∗ Sα,1)(t)xdt = x+A

j∑
l=0

kατ (j − l)Slα,1x.

By definition, for all n ∈ N, we have

C∇α(Sα,1x)
n = ∇−(1−α)

τ ∇1
τ (Sα,1x)

n =

n∑
j=0

k1−ατ (n− j)(∇1
τSα,1x)

j ,
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and by (3.35) we get

(∇1
τSα,1x)

j =
1

τ
(Sjα,1x− Sj−1

α,1 x) =
A

τ

j∑
l=0

kατ (j − l)Slα,1x− A

τ

j−1∑
l=0

kατ (j − 1− l)Slα,1x

for all j ≥ 1.

If Rα(t) := (gα ∗ Sα,1)(t), then the Corollary 2.9 implies that Rjα =
∑j
l=0 k

α
τ (j − l)Slα,1. Since (g1−α ∗

gα)(t) = g1(t), the Corollary 2.9 implies again that for all n ∈ N,
n∑
j=0

k1−ατ (n− j)

j∑
l=0

kατ (j − l)Slα,1x =

n∑
j=0

k1−ατ (n− j)Rjα

=

∫ ∞

0

ρτn(t)(g1−α ∗Rα)(t)xdt

=

∫ ∞

0

ρτn(t)(g1 ∗ Sα,1)(t)xdt

=

n∑
j=0

k1τ (n− j)Sjαx.

Since k1τ (n) = τ for all n ∈ N, we get

(3.36)

n∑
j=0

k1−ατ (n− j)

j∑
l=0

kατ (j − l)Slα,1x = τ

n∑
j=0

Sjαx.

Since
∑−l
j=0 v

j = 0 for all l ∈ N, we have

n∑
j=0

k1−ατ (n− j)

j−1∑
l=0

kατ (j − 1− l)Slα,1x =

n∑
j=1

k1−ατ (n− j)

j−1∑
l=0

kατ (j − 1− l)Slα,1x =

n∑
j=1

k1−ατ (n− j)Rj−1
α x,

and thus
n∑
j=0

k1−ατ (n− j)

j−1∑
l=0

kατ (j − 1− l)Slα,1x = τ

n−1∑
j=0

Sjαx,

for all n ∈ N, which implies that

C∇α(Sα,1x)
n =

A

τ

n∑
j=0

k1−ατ (n− j)

j∑
l=0

kατ (j − l)Slα,1x− A

τ

n∑
j=1

k1−ατ (n− j)

j−1∑
l=0

kατ (j − 1− l)Slα,1x

= A

n∑
j=0

Sjαx−A

n−1∑
j=0

Sjαx

= ASnαx,

for all n ∈ N and x ∈ X, which allows us to conclude that

C∇αSnα,1u0 = ASnα,1u0.

On the other hand,

C∇α((Sα,α ⋆ f)
n) = ∇−(1−α)

τ ∇1
τ (Sα,α ⋆ f)

n

=

n∑
j=0

k1−ατ (n− j)∇1
τ (Sα,α ⋆ f)

j

=
1

τ

n∑
j=0

k1−ατ (n− j)(Sα,α ⋆ f)
j − 1

τ

n∑
j=1

k1−ατ (n− j)(Sα,α ⋆ f)
j−1.
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We observe that by Proposition 2.10

(3.37) (Sα,α ⋆ f)
j =

j∑
l=0

Sj−lα,αf
l =

1

τ

∫ ∞

0

ρτj (t)(Sα,α ∗ f)(t)dt = 1

τ
(Sα,α ∗ f)j .

Since

Sα,α(t)x = gα(t)x+A(gα ∗ Sα,α)(t)x,
for all x ∈ X, and t ≥ 0, we obtain

(Sα,α ∗ f)(t) = (gα ∗ f)(t) +A(gα ∗ Sα,α ∗ f)(t),

and, multiplying this equation by ρτj (t) and integrating over [0,∞) we get by Proposition 2.10 that

τ(Sα,α ⋆ f)
j =

∫ ∞

0

ρτj (t)(Sα,α ∗ f)(t)dt =
∫ ∞

0

ρτj (t)(gα ∗ f)(t)dt+A

∫ ∞

0

ρτj (t)(gα ∗ Sα,α ∗ f)(t)dt,

and by Corollary 2.9 we have

(3.38) (Sα,α ⋆ f)
j =

1

τ

[
j∑
l=0

kατ (j − l)f l +A

j∑
l=0

kατ (j − l)(Sα,α ∗ f)l
]
.

The equation (3.38) implies that

C∇α((Sα,α ⋆ f)
n) =

1

τ2

n∑
j=0

k1−ατ (n− j)

[ j∑
l=0

kατ (j − l)f l +A

j∑
l=0

kατ (j − l)(Sα,α ∗ f)l
]

− 1

τ2

n∑
j=1

k1−ατ (n− j)

[ j−1∑
l=0

kατ (j − 1− l)f l +A

j−1∑
l=0

kατ (j − 1− l)(Sα,α ∗ f)l
]
.

Analogously to equation (3.36), we can prove that

n∑
j=0

k1−ατ (n− j)

j∑
l=0

kατ (j − l)f l = τ

n∑
j=0

f j ,

n∑
j=1

k1−ατ (n− j)

j−1∑
l=0

kατ (j − 1− l)f l = τ

n−1∑
j=0

f j ,

n∑
j=0

k1−ατ (n− j)

j∑
l=0

kατ (j − l)(Sα,α ∗ f)lx = τ

n∑
j=0

(Sα,α ∗ f)l

and
n∑
j=1

k1−ατ (n− j)

j−1∑
l=0

kατ (j − 1− l)(Sα,α ∗ f)lx = τ

n−1∑
j=0

(Sα,α ∗ f)l,

which implies, by (3.37), that

C∇α((Sα,α ⋆ f)
n) =

1

τ
fn +

1

τ
A(Sα,α ∗ f)n =

1

τ
fn +A(Sα,α ⋆ f)

n,

for all n ∈ N. We conclude that if un := Snα,1u0 + τ(Sα,α ⋆ f)
n, then

C∇α(un) = C∇α
(
Snα,1u0 + τ(Sα,α ⋆ f)

n
)
= ASnα,1u0 + τA(Sα,α ⋆ f)

n + fn = Aun + fn,

for all n ∈ N, that is, un solves the equation

C∇αun = Aun + fn, n ∈ N.

The uniqueness, follows from the uniqueness of the resolvent family {Sα,α(t)}t≥0 generated by A. �
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If A generates a C0-semigroup {T (t)}t≥0, then two subordination principles show that A generates
an (α, 1)-resolvent family {Sα,1(t)}t≥0 (see [7, Theorem 3.1]) and an (α, α)-resolvent family {Sα,α(t)}t≥0

(see [30, Theorem 3.1]), given, respectively by

(3.39) Sα,1(t)x =

∫ ∞

0

Φα(r)T (rt
α)xdr and Sα,α(t)x = α

∫ ∞

0

tα−1rΦα(r)T (rt
α)xdr t ≥ 0, x ∈ X,

where Φα is the Wright type function ([45, Appendix F])

Φα(z) :=

∞∑
n=0

(−z)n

n!Γ(−αn+ 1− α)
=

∫
γ

µα−1eµ−zµ
α

dµ,

where γ is a contour which starts and ends at −∞ and encircles the origin once counterclockwise. There-
fore, we have the following result.

Corollary 3.14. Let A be the generator of a C0-semigroup {T (t)}t≥0. If u0 ∈ X and f is a bounded
function, then the fractional difference equation

C∇αun = Aun + fn, n ∈ N,

with the initial condition u0 = u0, has a unique solution given by

un = Snα,1u0 + τ(Sα,α ⋆ f)
n,

for all n ∈ N, where {Sα,1(t)}t≥0 and {Sα,α(t)}t≥0 are given in (3.39).

Remark 3.15. We notice in Theorem 3.12 that if A is a sectorial operator which generates also an (α, α)-
resolvent family {Sα,α(t)}t≥0, then by Theorem 3.11, Dn+1

α,1 = Snα,1 and Dn+1
α,α = Snα,α for all n ∈ N, which

means that in this case the solutions given in (3.33) and (3.34) are the same.

3.2. Riemann-Liouville fractional difference equation. Now, we consider the fractional difference
equation for the Riemann-Liouville difference operator

(R∇αu)n = Aun + fn, n ∈ N.

Thanks to the properties of {Sα,β(t)}t≥0 given in Proposition 2.2 and Theorem 2.7, the proof of the
next result follows similarly to the proof of Theorem 3.13. We omit the details.

Theorem 3.16. Let A be the generator of an (α, α)-resolvent family {Sα,α(t)}t≥0 in a Banach space X.
If u0 ∈ X and f is a bounded function, then the fractional difference equation

(R∇αu)n = Aun + fn, n ∈ N,

with the initial condition u0 = u0, has a unique solution given by

(3.40) un = Snα,αu0 + τ(Sα,α ⋆ f)
n,

for all n ∈ N.

The proof of the next result follows similarly to the proof of Theorem 3.12. We omit the details.

Theorem 3.17. Let A be a sectorial operator in a Banach space X. If u0 ∈ ker(A) and f0 = 0, then the
fractional difference equation

(3.41) R∇αun = Aun + fn, n ∈ N,

with the initial condition u0 = u0, has a unique solution given by

un = Dn+1
α,α u0 + τ

n∑
j=0

Dn+1−j
α,α f j ,

for all n ∈ N.
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4. Error estimates for sectorial operators

In this section we study the convergence of the method introduced in Section 3 and we compare the
solution un to the equation (3.32) and the solution u to the equation (1.3) at time tn = nτ, where τ > 0.
We prove here the result for the Caputo fractional derivative. The Riemann-Liouville case is analogous
and we omit the details.

For a closed operator A ∈ Sec(θ,M), we will consider the following path Γt : For
π
2 < θ < π, we take

ϕ such that 1
2ϕ <

π
2α < ϕ < θ. Next, we define Γt (see Figure 1) as the union Γ1

t ∪ Γ2
t , where

Γ1
t :=

{
1

t
eiψ/α : −ϕ < ψ < ϕ

}
and Γ2

t :=

{
re±iϕ/α :

1

t
≤ r

}
.

Figure 1. Plot of path Γt.

The next result will be useful to prove the main theorem in this section. A similar result can be found
in [14].

Lemma 4.18. Let A ∈ Sec(θ,M) and Γ be the complex path defined above. If µ ≥ 0, then there exist
positive constants Cα, depending only on α, such that∫

Γt

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤ Cαt

µ−1

for all t > 0, where

Cα :=

(
2ϕ

∫ ϕ

−ϕ
ecos(ψ/α)dψ +

2

− cos(ϕ/α)

)
.

Proof. On Γ1
t we have∫

Γ1
t

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤ 2ϕ

∫ ϕ

−ϕ

e(t
cos(ψ/α)

t )∣∣∣ e(iµψ/α)

tµ

∣∣∣ 1

t
dψ = 2ϕ

∫ ϕ

−ϕ
ecos(ψ/α)dψtµ−1.

On the other hand, since 1
2ϕ <

π
2α < ϕ we obtain π

2 <
ϕ
α < π, and thus cos(ϕ/α) < 0, which implies

that on Γ2
t we have∫

Γ2
t

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤ 2

∫ ∞

1
t

ert cos(ϕ/α)

rµ
dr ≤ 2tµ

∫ ∞

0

ert cos(ϕ/α)dr = 2
tµ−1

− cos(ϕ/α)
.
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We conclude that ∫
Γt

∣∣∣∣eztzµ
∣∣∣∣ |dz| ≤

(
2ϕ

∫ ϕ

−ϕ
ecos(ψ/α)dψ +

2

− cos(ϕ/α)

)
tµ−1.

�

Now, we notice that if z = 1
t e
iϕ/α, then zα = 1

tα e
iϕ and arg(zα) = ϕ < θ, which means that zα ∈ ρ(A),

because A ∈ Sec(θ,M). Hence, by using the path Γ ≡ Γt, the inversion formula of the Laplace transform
allows to write

(4.42) Sα,β(t) =
1

2πi

∫
Γ

eztzα−β(zα −A)−1dz, t > 0.

Given 0 < ε < 1, the space of all continuous function f : [0,∞) → D(Aε) endowed with the norm
∥f∥ε := supt≥0 ∥f(t)∥ε = supt≥0 ∥Aεf(t)∥ will be denoted by C([0,∞), D(Aε)).

Theorem 4.19. Let 0 < α, ε < 1 such that 1 < α(1 + ε) < 2. Suppose that f ∈ C([0,∞), D(Aε)). Let
A ∈ Sec(θ,M) which generates an (α, α) resolvent family {Sα,α(t)}t≥0. Let Γ be the complex path defined
above. If u0 ∈ D(Aε), then for each T > 0 there exists a constant C = C(T ) > 0 (independent of the
solution, the data and the step size) such that, for 0 < tn ≤ T, there holds

(4.43) ∥un − u(tn)∥ ≤ Cτtαε−1
n (∥u0∥ε + ∥f∥ε) .

Proof. The solution to (1.1) is given by

u(t) = Sα,1(t)u0 + (Sα,α ∗ f)(t),
and by Theorem 3.13, the solution to (3.32) is given by

un = Snα,1u0 + τ(Sα,α ⋆ f)
n.

Fix n ∈ N such that 0 < tn ≤ T, where tn := τn. Then, we have

(4.44) ∥un − u(tn)∥ ≤ ∥(Sα,1(tn)− Snα,1)u0∥+ ∥(Sα,α ∗ f)(tn)− τ(Sα,α ⋆ f)
n∥ := I1 + I2.

To estimate the first term, we notice that

I1 ≤
∫ ∞

0

ρτn(t)∥(Sα,1(t)− Sα,1(tn))u0∥dt.

Now, if Γ = Γtn then, by (4.42) we can write

(Sα,1(t)− Sα,1(tn))u0 =
1

2πi

∫
Γ

(ezt − eztn)zα−1(zα −A)−1u0dz

=
1

2πi

∫
Γ

(ezt − eztn)

z
zα(zα −A)−1u0dz.

Since

(4.45) zα(zα −A)−1 = (zα −A)−1A+ I = A(zα −A)−1 + I and A(zα −A)−1 = A1−ε(zα −A)−1Aε,

we have

(Sα,1(t)− Sα,1(tn))u0 =
1

2πi

∫
Γ

(ezt − eztn)

z
u0dz +

1

2πi

∫
Γ

(ezt − eztn)

z
A1−ε(zα −A)−1Aεu0dz.

Since h(z) := (ezt−eztn )
z has a unique removable singularity at z = 0 and t ≥ tn, h(z) can be analytically

extended to the region enclosed by the path ΓR := ΓRtn where ΓR is the path given in Figure 2, and
therefore

1

2πi

∫
ΓR

(ezt − eztn)

z
u0dz = 0.

Since
1

2πi

∫
Γ

(ezt − eztn)

z
u0dz = lim

R→∞

1

2πi

∫
ΓR

(ezt − eztn)

z
u0dz,
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we obtain
1

2πi

∫
Γ

(ezt − eztn)

z
u0dz = 0.

Figure 2. Plot of path ΓR.

On the other hand, since A is a sectorial operator, we get by (2.10)

∥A1−ε(zα −A)−1x∥ ≤ K(M + 1)1−ε
∥x∥
|z|αε

,

for all x ∈ X, which implies that

∥(Sα,1(t)− Sα,1(tn))u0∥ ≤ K(M + 1)1−ε

2π

∫
Γ

|ezt − eztn |
|z|

∥Aεu0∥
|z|αε

|dz|.

By the mean value for complex valued functions, there exist t0, t1 with 0 < tn < t0 < t1 < t such that

|ezt − eztn |
|z|

≤ (t− tn)
(
|et0z|+ |et1z|

)
.

Therefore, by Lemma 4.18 we obtain

∥(Sα,1(t)− Sα,1(tn))u0∥ ≤ K(M + 1)1−ε(t− tn)∥Aεu0∥
2π

∫
Γ

|ezt0 |+ |ezt1 |
|z|αε

|dz|

≤ K(M + 1)1−ε(t− tn)

2π
Cα(t

αε−1
0 + tαε−1

1 )∥Aεu0∥.

Since 0 < α, ε < 1 and tn < t0 < t1 we obtain tαε−1
1 < tαε−1

0 < tαε−1
n and thus

∥(Sα,1(t)− Sα,1(tn))u0∥ ≤ K(M + 1)1−ε(t− tn)

π
Cαt

αε−1
n ∥u0∥ε.

We conclude that∫ ∞

0

ρτn(t)∥(Sα,1(t)− Sα,1(tn))u0∥dt ≤
K(M + 1)1−ε

π
Cαt

αε−1
n ∥Aεu0∥

∫ ∞

0

ρτn(t)(t− tn)dt.

Since
∫∞
0
ρτn(t)dt = 1 for all n ∈ N, an easy computation shows that∫ ∞

0

ρτn(t)(t− tn)dt =

∫ ∞

0

ρτn(t)tdt− tn = tn+1 − tn = τ,(4.46)

which implies that∫ ∞

0

ρτn(t)∥(Sα,1(t)− Sα,1(tn))u0∥dt ≤ KCα(M + 1)1−ε

π
tαε−1
n ∥u0∥ετ.
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On the other hand, the second term in (4.44) can be written, by Proposition 2.10, as

∥(Sα,α ∗ f)(tn)− τ(Sα,α ⋆ f)
n∥ =

∥∥∥∥∫ ∞

0

ρτn(t)[(Sα,α ∗ f)(tn)− (Sα,α ∗ f)(t)]dt
∥∥∥∥ .

Moreover, we can write

(Sα,α ∗ f)(t)− (Sα,α ∗ f)(tn) =

∫ t

0

Sα,α(t− r)f(r)dr −
∫ tn

0

Sα,α(tn − r)f(r)dr

=

∫ tn

0

(Sα,α(t− r)− Sα,α(tn − r))f(r)dr +

∫ t

tn

Sα,α(t− r)f(r)dr

:= J1 + J2.

Now, we estimate the integrals J1 and J2. In order to estimate J1 we estimate, for simplicity, the norm
∥(Sα,α(t)− Sα,α(s))x∥ for x ∈ D(Aε), with t > s > 0. By using the path Γ, we can write

(Sα,α(t)− Sα,α(s))x =
1

2πi

∫
Γ

(ezt − ezs)(zα −A)−1xdz.

By (4.45) we have

(Sα,α(t)− Sα,α(s))x =
1

2πi

∫
Γ

(ezt − ezs)

zα
zα(zα −A)−1xdz

=
1

2πi

∫
Γ

(ezt − ezs)

zα
A1−ε(zα −A)−1Aεxdz +

1

2πi

∫
Γ

(ezt − ezs)

zα
xdz.

Since 0 < α < 1, the function

g(z) :=
(ezt − ezs)

zα
=

(ezt − ezs)

z
z1−α

has a unique removable singularity at z = 0 and thus

1

2πi

∫
Γ

(ezt − ezs)

zα
xdz = 0,

(following the same method used to prove that
∫
Γ
h(z)u0dz = 0). Next, we notice that if x ∈ D(Aε),

then the sectoriality of operator A implies that

(4.47) ∥A1−ε(zα −A)−1Aεx∥ ≤ K(M + 1)1−ε
∥Aεx∥
|z|αε

,

which gives

∥(Sα,α(t)− Sα,α(s))x∥ ≤ 1

2π
K(M + 1)1−ε

∫
Γ

|ezt − ezs|
|z|α

∥Aεx∥
|z|αε

|dz|

=
1

2π
K(M + 1)1−ε

∫
Γ

|ezt − ezs|
|z|

1

|z|α(ε+1)−1
|dz|∥Aεx∥.

The mean value theorem implies the existence of t0, t1 with 0 < s < t0 < t1 < t such that

|ezt − ezs|
|z|

≤ (t− s)
(
|et0z|+ |et1z|

)
.
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Since 0 < α(1 + ε) − 1 < 1 and s < t0 < t1 < t we have t
α(1+ε)−2
1 < t

α(1+ε)−2
0 < sα(1+ε)−2. By Lemma

4.18 we get

∥(Sα,α(t)− Sα,α(s))x∥ ≤ 1

2π
K(M + 1)1−ε(t− s)

∫
Γ

|et0z|+ |et1z|
|z|α(ε+1)−1

|dz|∥Aεx∥

≤ C

2π
K(M + 1)1−ε(t− s)(t

α(1+ε)−2
0 + t

α(1+ε)−2
1 )∥Aεx∥

≤ C

π
K(M + 1)1−ε(t− s)sα(1+ε)−2∥Aεx∥.

Replacing t by t− r and s by tn − r we can estimate J1 as∫ tn

0

∥(Sα,α(t− r)− Sα,α(tn − r))f(r)∥dr ≤ C

π
K(M + 1)1−ε(t− tn)

∫ tn

0

(tn − r)α(1+ε)−2∥Aεf(r)∥dr

≤ C∥f∥ε
π

K(M + 1)1−ε(t− tn)

∫ tn

0

(tn − r)α(1+ε)−2dr

=
Cα∥f∥ε

π
K(M + 1)1−ε(t− tn)gα(1+ε)(tn)Γ(α(1 + ε)− 1)

=
Cα∥f∥ε

π
K(M + 1)1−ε(t− tn)t

α(1+ε)−1
n

Γ(α(1 + ε)− 1)

Γ(α(1 + ε))

=
Cα∥f∥ε

π
K(M + 1)1−ε(t− tn)t

α(1+ε)−1
n

1

α(1 + ε)− 1
.

Since

(4.48)

∫ ∞

0

ρτn(t)(t− tn)t
α(1+ε)−1
n dt = tn+1t

α(1+ε)−1
n − tα(1+ε)n = τtα(1+ε)−1

n

we have∫ ∞

0

ρτn(t)

∥∥∥∥∫ tn

0

(Sα,α(t− r)− Sα,α(tn − r))f(r)dr

∥∥∥∥ dt ≤ Cα∥f∥ε
π

K(M + 1)1−ε
1

α(1 + ε)− 1
τtα(1+ε)−1
n

≤ Cα∥f∥ε
π

TαK(M + 1)1−ε
1

α(1 + ε)− 1
τtαε−1
n .

Finally, we estimate the integral J2. First, by (4.45) we can write

Sα,α(t)x =
1

2πi

∫
Γ

ezt(zα −A)−1xdz =
1

2πi

∫
Γ

ezt

zα
xdz +

1

2πi

∫
Γ

ezt

zα
A1−ε(zα −A)−1Aεxdz

for all x ∈ D(Aε). The first integral in the last equality is equal to zero, because the function z 7→ etz

zα =
etz

z z
1−α has a unique removable singulary at z = 0. On the other hand, by (4.47) and Lemma 4.18 we

obtain

∥Sα,α(t)x∥ ≤ K(M + 1)1−ε

2π

∫
Γ

|ezt|
|z|α(1+ε)

∥Aεx∥|dz| ≤ KCα(M + 1)1−ε

2π
tα(1+ε)−1∥Aεx∥,

for all t > 0 and x ∈ D(Aε). Therefore,∫ t

tn

∥Sα,α(t− r)f(r)∥dr ≤ KCα∥f∥ε(M + 1)1−ε

2π

∫ t

tn

(t− r)α(1+ε)−1dr.

We observe that ∫ t

tn

(t− r)α(1+ε)−1dr =

∫ t

0

(t− r)α(1+ε)−1dr −
∫ tn

0

(t− r)α(1+ε)−1dr.

Since∫ t

0

(t− r)α(1+ε)−1dr = Γ(α(1 + ε))(g1 ∗ gα(1+ε))(t) = Γ(α(1 + ε))gα(1+ε)+1(t) =
1

α(1 + ε)
tα(1+ε),
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for all t ≥ 0, x 7→ xα(1+ε)−1 is an increasing function and tn ≤ t, we obtain∫ t

tn

(t− r)α(1+ε)−1dr =
1

α(1 + ε)
tα(1+ε) −

∫ tn

0

(t− r)α(1+ε)−1dr ≤ 1

α(1 + ε)
(tα(1+ε) − tα(1+ε)n ).

We conclude that∫ t

tn

∥Sα,α(t− r)f(r)∥dr ≤ KCα∥f∥ε(M + 1)1−ε

2π

1

α(1 + ε)
(tα(1+ε) − tα(1+ε)n ),

for all t ≥ 0. An easy computation shows that∫ ∞

0

ρτn(t)t
α(1+ε)dt =

τα(1+ε)

n!
Γ(n+ 1 + α(1 + ε)).

Since for 0 < λ < 1 and n ≥ 0, Γ(n+λ)
Γ(n+1) < nλ−1 (see for instance [19]), and 0 < α(1+ ε)− 1 < 1 we obtain

τα(1+ε)

n!
Γ(n+ 1 + α(1 + ε)) = ττα(1+ε)−1Γ(n+ 1 + α(1 + ε)− 1)

Γ(n+ 2)
(n+ 1)(n+ α(1 + ε))

< tntn+1t
α(1+ε)−2
n+1 + α(1 + ε)τt

α(1+ε)−1
n+1

for all n ∈ N. Moreover, the function x 7→ xα(1+ε)−2 is a decreasing function, which implies that

t
α(1+ε)−2
n+1 ≤ t

α(1+ε)−2
n for all n ∈ N, and thus

τα(1+ε)

n!
Γ(n+ 1 + α(1 + ε)) ≤ tn+1t

α(1+ε)−1
n + α(1 + ε)τt

α(1+ε)−1
n+1 .

By (4.48), we get∫ ∞

0

ρτn(t)(t
α(1+ε) − tα(1+ε)n )dt =

τα(1+ε)

n!
Γ(n+ 1+ α(1 + ε))− tα(1+ε)n ≤ τtα(1+ε)−1

n + α(1 + ε)τt
α(1+ε)−1
n+1 .

Since t
α(1+ε)−1
n+1 = (n+ 1)τt

α(1+ε)−2
n+1 ≤ t

α(1+ε)−1
n + τt

α(1+ε)−2
n+1 ≤ 2t

α(1+ε)−1
n for all n ∈ N, and 0 < tn ≤ T

we obtain ∫ ∞

0

ρτn(t)(t
α(1+ε) − tα(1+ε)n )dt ≤ (1 + 2α(1 + ε))Tατtαε−1

n ,

and we conclude that∫ ∞

0

ρτn(t)

∫ t

tn

∥Sα,α(t− r)f(r)∥dr ≤ KCα∥f∥ε(M + 1)1−ε

2π

1

α(1 + ε)

∫ ∞

0

ρτn(t)(t
α(1+ε) − tα(1+ε)n )dt

≤ KCα∥f∥ε(M + 1)1−ε

π

(1 + 2α(1 + ε))Tα

α(1 + ε)
τtαε−1
n .

Finally, the constant C = C(T ) is given by

C =
KCα(M + 1)1−ε

π
max

{
1,

Tα

α(1 + ε)− 1
,
(1 + 2α(1 + ε))Tα

α(1 + ε)

}
.

�

5. Numerical Experiments

In this section we give some numerical experiments on the behavior of the Caputo fractional derivative

C∂
α
t and the Caputo difference operator (C∇α)n. Let α > 0 and m = ⌈α⌉. We assume that t ∈ [0, 1]

and we take τ = 1
N , where N ∈ N is given. We remark that, n! cannot be represented as a 64-bit

integer for n > 20 or as a 64-bit floating-point number for n > 171. The Stirling approximation formula
n! ≃

√
2πnn+

1
2 e−n can be used to calculate n! for large values of n (see for instance [55, Chapter 2]). On

the other hand, since
∫∞
0
ρτn(t)dt = 1, we notice that if f has a bounded derivative, then by (4.46) we

have ∥fn − f(tn)∥ =
∥∥∫∞

0
ρτn(t)(f(t)− f(tn))dt

∥∥ =
∥∥∥∫∞

0
ρτn(t)

(∫ t
tn
f ′(s)ds

)
dt
∥∥∥ ≤ τ∥f ′∥∞, and then, in

the numerical experiments, fn =
∫∞
0
ρτn(t)f(t)dt can be computed by using f(tn) = f(nτ).
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We first consider the function u(t) := tp, where p > m. By [31, Chapter 2, Property 2.1] we have

C∂
α
t u(t) =

Γ(p+1)tp−α

Γ(p−α+1) . If α = 1
2 , and p = 4, then m = 1 and C∂

1/2
t u(t) = 128t7/2

35
√
π
. Moreover,

(C∇αu)n = ∇−(1−α)
τ (∇1

τu)
n =

n∑
j=0

k1−ατ (n− j)
uj − uj−1

τ
=

τ
1
2

√
π

n∑
j=0

Γ( 12 + n− j)

Γ(n− j + 1)

uj − uj−1

τ

for all n ∈ N0, where u
j = tpj . In Figure 3, we have the Caputo fractional derivative C∂

α
t u(t) and the

Caputo difference operator (C∇αu)n on the interval [0, 1], where 0 ≤ n ≤ N and N = 20, 50 and N = 100,
respectively.
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Figure 3. C∂
α
t u(t) (line) and (C∇αu)n (circles) for N = 20, N = 50 and N = 100.

Now, we illustrate the exact u(t) and the approximated solution un (given in Theorem 3.13) to a
fractional differential and difference equations of order α = 1

2 . If f(t) = t2e−t, then the solution to the
Caputo fractional differential equation

∂
1
2
t u(t) = −u(t) + t2e−t, t ≥ 0, u(0) = 1,(5.49)

is given by

u(t) = e 1
2 ,1

(t) +

∫ t

0

e 1
2 ,

1
2
(t− s)s2e−sds,

where e 1
2 ,1

(t) := E 1
2 ,1

(−t 1
2 ), and e 1

2 ,
1
2
(t) := t

1
2−1E 1

2 ,
1
2
(−t 1

2 ).

In Figure 4 we have the exact and approximated solution to (5.49) on the interval [0, 5]. Here, we
consider τ = 5/N for N = 20, N = 50 and N = 100.
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Figure 4. The exact solution u(t) (line) and the approximated solution un (circles) to
(5.49) for N = 20, N = 50 and N = 100.

Since the exact solution to (5.49) is given by means of Mittag-Leffler functions (defined as infinite
series by (1.5)), in the numerical experiments, the exact and the approximated solution have been taken
as finite sums of these power expansions (with 100 terms).

Next, in Figure 5 we have the absolute error en for N = 20, N = 50 and N = 100.
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Figure 5. Error en to (5.49) for N = 20, N = 50 and N = 100. The results are in
accordance to Theorem 4.19, which means that the error goes to zero as τ ↓ 0
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Figure 6. Log Error for 1 ≤ n ≤ 120.

In Figure 6 we have the error as a function of tn for 1 ≤ n ≤ 120 using a log scale on the vertical axis.
As before, we take α = 1

2 .
Finally, we consider the initial value problem

(5.50)


∂αt u(x, t) =

∂2u(x, t)

∂x2
, t ≥ 0, x ∈ [0, 1],

u(0, t) = 0, t > 0,
u(1, t) = 0, t > 0,
u(x, 0) = h0(x), x ∈ [0, 1],

where h0(x) = x(1− x). The solution to (5.50) is given by (see for instance [54]):

(5.51) u(x, t) =

∞∑
n=1

8

(2n− 1)3π3
Eα,1(−(2n− 1)2π2tα) sin((2n− 1)πx).

Take α = 1
2 . In Figure 7 we have the approximated solution un := un(x0) given by

un =

∫ ∞

0

ρτn(t)u(x0, t)dt

for 1 ≤ n ≤ N at x0 = 0.3 on the interval [0, 0.1], where u is defined by (5.51). We take N = 20, 50 and
N = 80. Again, in the numerical experiments, the infinite series in (5.51) are taken as finite sums of the
power expansions (with 100 terms).
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Figure 7. Exact (line) and approximated (circles) solution u and un, respectively, for
N = 20, N = 50 and N = 80 at x0 = 0.3.

Finally, in Figure 8 we have the approximated solution un for 1 ≤ n ≤ 80 at x0 = 0.1, x0 = 0.5 and
x0 = 0.9 for t on the interval [0, 0.1].
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Figure 8. Exact (line) and approximated (circles) solution u and un, respectively, for
N = 80 at x0 = 0.1, 0.5 and x0 = 0.9.
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