TIME DISCRETIZATION OF FRACTIONAL SUBDIFFUSION EQUATIONS VIA
FRACTIONAL RESOLVENT OPERATORS.

RODRIGO PONCE

ABSTRACT. In this work, we study time discretization of subdiffusion equations, that is, fractional
differential equations of order « € (0, 1). Assuming that A is the generator of a fractional resolvent family
{Sa,a(t)}+>0, which allows to write the solution to the subdiffusion equation dfu(t) = Au(t) + f(t) as
a variation of constants formula, we find an interesting connection between {Sa,« (t)}:>0 and a discrete
resolvent family {S% ,}nen and then, by using the properties of {Sa,a(t)}t>0, we study the existence
of solutions to the discrete subdiffusion equation «V®u™ = Au™ + f™,n € N, where, based on the
backward Euler method for a 7 > 0 given, ¢V*u™ is an approximation of dfu(t) at time ¢, := 7n.
We study simultaneously the fractional derivative in the Caputo and Riemann-Liouville sense. We also
provide error estimates and some experiments to illustrate the results.

1. INTRODUCTION

Let A be a closed linear operator defined in a Banach space X. The well known theory of Cy-semigroups
of linear operators plays a fundamental role in the existence of solutions to the abstract differential
equation of first-order w'(t) = Au(t) + f(t), because its solution is given in terms of the variation of
constants formula

u(t) = T(t)u(0) + /0 T(t —s)f(s)ds,

where {T'(t)},>0 is the Cy-semigroup generated by A, see for instance [17]. The notion of Cyp-semigroup
can be seen as a particular case of a more general concept: the resolvent families of operators. This
concept was introduced by Da Prato and Ianelli in [15, Definition 1] as an extension of the notion of
Cy-semigroups of operators to study the existence of mild solutions to the integro-differential equation
u'(t) = fot k(t—s)Au(s)ds+ f(t), for t > 0, under the initial condition u(0) = ug € X, where k € L}, (R),

f € C([0,T],X) and A is a closed linear operator which generates a resolvent family {U(¢)};>o. The
solution to this integro-differential equation is given again in terms of its resolvent family by

u(t) = U(t)ug + /0 U(t—s)f(s)ds.

These examples of families of operators show that the solution to certain abstract equations can be written
in terms of those families. For this reason, the general theory of resolvent families, which allows to study
the existence of solutions (and their properties) to a wide class of abstract equations, including Volterra
equations [22, 52], abstract second order equations [5, 56], fractional differential equations [33, 34], among
other, has had a rapid developed during the last two decades.

Fractional subdiffusion equations appear in many problems in physics and biological sciences, such
as anomalous diffusion, fractional generalization of the kinetic equation, random walks, fluid flow, rhe-
ology, electrical networks, control theory of dynamical systems, viscoelasticity, chemical physics, signal
processing, among other, see for instance [4, 24, 31, 45].

Again, to study the existence of solutions to fractional differential equations, a crucial tool are the
fractional resolvent families, see [7, 8, 10, 16, 33, 34, 35, 50, 51, 57] and the references therein. More
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concretely, if 0 < a < 1 and if we consider the subdiffusion equations

(1.1) O u(t) = Au(t) + f(t),t >0, u(0) = uo,
and
(1.2) Ropu(t) = Au(t) + f(t),t >0, (g1—a *u)(0) = uo,

where 92 and %9 denote, respectively, the Caputo and the Riemann-Liouville fractional derivatives, f
is a suitable function, gg is the function defined by gg(t) = t°~1/I'(8) (here I'(:) denotes the Gamma
function and 8 > 0), A is a closed and linear operator defined on X, (typically A is the second order
operator), and x belongs to X, then the solutions to Problems (1.1)—(1.2) can be written, respectively,
in terms of a variation of constants formula as

(1.3) u(t) = Sa1(t)uo + /0 Se,a(t —s)f(s)ds,
and
(1.4) u(t) = Sa,a(t)uo —|—/0 Sa,a(t —s)f(s)ds,

where, for a, 8 > 0, S, 5(t) is the fractional resolvent family defined by
1 At ya— -
wp(t) == — AT — A)7rdA, > 0.
Suslt) = 5z [ SATEOT )M £20

Here, 7 is a suitable complex path where the resolvent operator (A% — A)~! is well defined. The function
Sa,p(t) corresponds to a generalization of the scalar Mittag-Leffler function, introduced by Mittag-LefHer
and Wiman [18, 58, 59], which is defined by

(1.5) E,p(z) = kzo m =5 /Ha et P (p® — 2)"tdp, a,f>0,z€C,
where, Ha is a Hankel path, i.e. a contour which starts and ends at —oo and encircles the disc |u| < |z|'/®
counterclockwise.

There are important connections between resolvent families and the existence of solutions to fractional
differential equations, see for instance [11, 12, 13, 32, 38, 46, 47, 48, 53] and the references therein.
More specifically, in [11, 12, 13] the authors study the behavior of the resolvent family associated to the
fractional differential equation Ofu(t) = Au(t) + f(t), where 1 < a < 2, A is sectorial operator and f
is a suitable function, and then, the authors obtain the asymptotic behavior of a time discretization of
this equation based on the backward Euler method for 7 > 0. On the other hand, in [46, 47, 48, 53]
the authors study discretizations in time of integro-differential equations in Banach spaces, which can
be seen as an integral version of some fractional differential equations. See also the Monograph [9] for a
general study of discretizations of integro-differential equations. More recently, in [38] the author shows
the existence of solutions to the Caputo fractional difference equation

(1.6) cA%u™ = Au™Tt, n €N,

with the initial condition u® = ug € D(A), where 0 < o < 1, the operator ¢ A®u" is an approximation of
the Caputo fractional derivative dgu(t) (at time ¢ = n) which is defined by

" T(l-a+n—j) , ,
Aa n = J+1 _ .7
A= Y T arm ey )

where v/ := 5 L [ e~ "tIu(t)dt. The solution to (1. 6) is given by u™ = S% (I — A)ug, where {Sq,1(t)}i>0
is the resolvent family given in (1.3) and S7, = 2 [ e 4" S5, 1( )dt, for all n € N.

The study of existence of solutions to fractional difference equations of Caputo and Riemann-Liouville
type has been studied widely in the last years, see for instance the interesting papers [3, 6, 20] and the
references given there. However, these discretizations for the Caputo and Riemann-Liouville fractional
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derivatives lack the time step 7 > 0. On the other hand, the authors in [27] and [39] study [,-discrete
maximal regularity of fractional evolution equations for the Caputo and Riemann-Liouville fractional
derivatives on Banach space with the UM D property. See also [25, 26, 28, 29, 40] for different schemes
of approximation of fractional models.

In this work, we give a discretization in time to equations (1.1) and (1.2) based on the backward
Euler convolution method for 7 > 0 (see for instance [43, 44]). Here, by assuming that A is generator
of a resolvent family {Sq o (t)}t>0, we study a strong connection between this resolvent family and the
existence of solutions to the discrete equations for the Caputo and Riemann-Liouville derivative

(1.7) oVour = Au" 4+ f*, neN and (V)" =Au"+ ", neN.

Moreover, we show that the solution to these discrete fractional difference equations can be written
as variation of constants formula, analogously to (1.3) and (1.4), but in terms of a discrete fractional
resolvent family {S7, ,}nen-

The paper is organized as follows. In Section 2 we give the Preliminaries on resolvent families and con-
tinuous and discrete fractional calculus. Here, given a time step size 7 > 0, we present new discretizations
cVeum and BV to 0fu and FO%u, respectively. Moreover, we study the main properties of ¢ V®u™
and BV*y", in Theorem 2.7 we find an interesting connection between ¢V®u™ and d5u and we study
the connection between the continuous and the discrete resolvent family {Sq o (t)}i>0 and {S§ , }nen,
respectively. The Section 3 is devoted to the numerical scheme for (1.3) and (1.4). Here, by assuming
that A is a sectorial operator we study the existence of solutions to (1.7). Moreover, we show that if A
is the generator of a resolvent family {S, o(f)}i>0, then the fractional difference equations (1.7) have a
solution given in terms of the discrete resolvent family {S7, , }nen. In Section 4 we study error estimates of
the continuous and discrete solution and in Section 5 we provide some numerical experiments to illustrate
the theoretical results.

2. FRACTIONAL RESOLVENT FAMILIES AND CONTINUOUS AND DISCRETE FRACTIONAL CALCULUS

2.1. Resolvent families. Let X = (X, || - ||) be a Banach space. The Banach space of all bounded and
linear operators from X into X is denoted by B(X). If A is a closed linear operator on X, its resolvent set
is denoted by p(A), and the resolvent operator is defined by R(\, A) = (A — A)~! for all A € p(A). The
spectrum of A is defined by o(A) := C\ p(A). A family of operators {S(¢)}1>0 C B(X) is exponentially
bounded if there exist real numbers M > 0 and w € R such that

(2.8) IS < Me**, t>0.
We notice that if {S(¢)}1>0 C B(X) is exponentially bounded, then the Laplace transform of S(t)

S\ = /O e NS ()t

exists for all ReA > w. If w = 0, then {S(¢)}+>0 C B(X) is bounded for all ¢ > 0.

Definition 2.1. [2] Let o, 8 > 0 be given. Let A be a closed linear operator with domain D(A) defined
in a Banach space X. The operator A is called the generator of an («, 3)-resolvent family if there exist
w >0 and a strongly continuous function Sy g : Ry — B(X) such that {\* : ReX > w} C p(A) and

AP — A) e = / e S, 5(t)xdt,
0
for all ReA > w and x € X. The family {Sa,5(t) }1>0 is also called the (o, B)-resolvent family generated
by A.

If we compare Definition 2.1 with the concept of (a, k)-regularized families introduced in [36] we observe
that the function ¢ — S, g(t), for t > 0, is a (ga, gg)-regularized family. Moreover, the function S, g(t)
satisfies the following functional equation (see [2, 34, 41]):

Se,5(5)(9a * Sa,5)(t) = (9o * Sa,p)(5) S5 (1) = 95(5) (g * Sa,8)(t) = 95 (1) (9a * Sarp) (5),
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for all ¢t,s > 0. Moreover, a closed operator A generates a unique («, 3)-resolvent family. We recall that
th—1

for 1 > 0, g, defines the function g, (t) := M) for all t > 0. We notice that gg behaves like a delta
function in the sense that gg = f — f as § — 0 and therefore, we define naturally (go * f)(¢) := f(t) for
all ¢ > 0.

Moreover, if an operator A with domain D(A) is the infinitesimal generator of a resolvent family
Sa,p(t), then for all z € D(A) we have

Sap(t)x —gp(t)x
t—0+ Ja+p (t) '
For example, if & = 8 = 1, then S 1(¢) corresponds to a Cy-semigroup, if & = 2,5 = 1, then Sy 1(¢) is
a cosine family, and if & = 8 = 2, then S o(t) is a sine family. See [5] for further details. If & > 0 and
B =1, then S, 1(t) is the solution operator introduced in [7, Definition 2.3]. The following result gives
some properties of S, g(t). Its proof can be deduced from [36, Lemma 2.2 and Proposition 2.5] and the
details are in [10, Proposition 3.10] and [1].

Proposition 2.2. Let {S, g(t) }1>0 be the («, B)-resolvent family generated by A. Then,

1) lim s
t—0t+  ga(t)
(2) For all x € D(A) and t > 0 we have S, g(t)x € D(A) and ASq, g(t)x = Sa,5(t)Ax.

(3) Forxz € X andt > 0 we have fot 9ot — 8)Su p(s)zds € D(A) and

=z, for all x € X.

(2.9) Sapt)r = gs(t)x + A/O 9ot — 8)Sa,p(s)xds.

We say that an operator A : D(A) C X — X is said to be sectorial of angle 0 if there are constants
weR, M >0and 0 e (n/2,7) such that p(A) D Sp, :={2€C:2#w:|arg(z —w)| <0} and

[(z—A)7Y < for all 2z € Sp.

|2 — wl
In order to simplify the presentation of the results, we may assume, without lost of generality, that w = 0.
If not so we can take the operator A — wl, which is also sectorial (here I denotes the identity operator
in X). In that case, we write A € Sect(#, M) and we denote the sector Sp o as Sp. For further details on
sectorial operators we refer to the reader to [17, 23].

Let A be a linear and closed operator whose resolvent set contains the negative half-line (—oo, 0], (for
example, a sectorial operator with w > 0.) Given 0 < & < 1, X¢ denotes the domain of the fractional
power A, that is X© := D(A®) endowed with the graph norm ||z||e = ||Az| (see for instance [42]). We
notice that X' corresponds to the domain of A, and X° to the space X. It is a well known fact that if
0 <e<1,and z € D(A), then there exists a constant K = K, > 0 such that (see [42])

(2.10) 1A%z < K| Az|||l=] .

2.2. Continuous and discrete fractional calculus. Now, we review some preliminaries on fractional
calculus. For o > 0, let m = [«] be the smallest integer m greater than or equal to «. The Caputo
fractional derivative of order o of a C™-differentiable function f : Ry — X is defined by

o2 f(t) = / It — )£ (5)ds.

Similarly, the Riemann-Liouville fractional derivative of order a of f : Ry — X is defined by

iy A
Rat f(t) = am Im—a(t — ) f(s)ds.
0
We observe that if @« = m € N, then 9" f and £9/" f coincide with the usual derivative % of order

m. Moreover, if 0 < o < 1, then 97T f(t) = 02 (0} f)(t) # O (87 f)(t) and BT f(t) = DL (ROL f)(t) #
Roe (0L f)(t), unless f(0) = 0. For further details on fractional calculus, we refer to the reader to [49].
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The set of non-negative integer numbers is denoted by Ny and the non-negative real numbers by Rar.
For 7 > 0 fixed and n € Ny, we set
t\" 1
(£ 2,

We notice that p7(t) > 0 for all t > 0 and n € Ny, and p7,(t) = 77 1p,(t/7) where p,(t) := e~ 't"/nl.
Moreover, an easy computation shows that

RiGs

pn(t) :=e

oo
/ pr(t)dt =1, forall neNp.
0
Let u : Ré‘ — X be a bounded and locally integrable function. We define the sequence (u™),, by

(2.11) u" = /0OO pon(Bu(t)dt, n € Np.

We notice that for small 7 > 0, the function p], behaves like a delta function at ¢,, := n7 and therefore,
u™ is an approximation of u(t,).

For the Banach space X, F (Rar ; X) denotes the vectorial space consisting of all vector-valued functions
v: Ry — X.For n € N we define v" as in (2.11). The backward Euler operator V, : F(R; X) —
F(R{; X) is defined by

n_ ,m—1
Vo= L, n € N.
T
For m > 2, we define recursively V7 : F(R{; X) — F(R§; X) as
m—1 n >
(2.12) VI = { VTV, n=m
0, n<m,

where V1 = V., and V¢ is the identity operator. The operator V™ is called the backward difference
operator of order m. We notice that if v € F(RJ; X) then

1 m , ,
m n __ 1] n—j .
(V') —ijgo(])(—)v , neN

Now, we define the sequence

o0
(2.13) k2 (n) = T/ T (Oga(t)dt, € Noa> 0.
0

An easy computation shows that

7T (a+n) I(a+n)
2.14 kZ(n) = = N 0.
214) "= ) Ty el meNoa>
The next definitions were introduced in [37, Definitions 2.5, 2.7 and 2.8] in case 7 = 1. See also [21,
Chapter 3] and the references therein. We give here the definition for all 7 > 0.

Definition 2.3. Let a > 0. The o —fractional sum of v € F(R; X) is defined by
n
(2.15) (V%)™ = Z kE*(n—j)v?, neNg.
j=0
We now introduce the fractional difference operators in the sense of Caputo and Riemann-Liouville.

Definition 2.4. Let a € Ry \ Ny. The Caputo fractional backward difference operator of order «,
VY F(Ry; X) - F(R4; X), is defined by

(Cvav)n = v;(m—a)(v:nv)n, neN,

where m — 1 < o < m.



6 RODRIGO PONCE

Here, as in [21, Chapter 1, Section 1.5] we define by convention

Z’l}] =0,
j=0
for all kK € N.

Definition 2.5. Let o € Ry \ Ny. The Riemann-Liouville fractional backward difference operator of
order o, IV : F(Ry; X) — F(Ry; X), is defined by

(Bvop)n .= v (v m=ey)n - p e N,
where m — 1 < o < m.

In both definitions, if a € Ny, then the fractional backward difference operators ¢V® and V< are
defined as the backward difference operator V¢.
We notice that if 0 < a < 1, then

CvaJrl,Un _ v;(Qf(aJrl))(vzv)n _ v;(lfa) (VT(VTU))n _ CVQ(V},U)” _ Cva(cvlv)n
and
Rva+1vn _ v2 (v (2—(a+1)) ) Vl (vl (V (1—w) )) _ v‘lr(Rva,U)n _ va(Rva,U)n7

for all n € N.

However, ¢Vt #£ oVH(cV)" and fvetiyn £ BEye(Byly)n In fact, if v(t) = tvg, where
0 # vg € X, then V}.v” = 1o for all n > 1 and V?.v” = 0 for all n > 2. This implies that for n > 2 we
obtain

CVOH_I’U”L V (1—«) VZ Zkl a n ] v2 )
On the other hand,
1
Cvl (Cvav)n _ ; (Cva n —c va n 1)
1 n n—1
= = D k= )(Vio) =Y ki (n—1-j)(Viv)
j=1 j=1
n n—1
= [ DoK== D kT —1-4) | v
j=1 j=1
= E1=%(n — 1)vy,

for all n > 2. Since k17%(1) = (1 — a)7'~?, we conclude that if & > 0 and n = 2, then
Vi eVo)? = (1—a)7 %y.
Therefore, cVOT1v™ £ oV(cV)m.
Now, if v is the constant vector-valued function v(t) = vp € X, then V1v™ = 0 for all n € N and thus

1
Rva(vl,u)n — Vi(v:(l—a)v‘rv)n —— (v;(l—a)(v‘rv)n _ V;(l_a) (VTU)n_1> .
T

Since
m

V(W)™ =Y kY (m = §)(Viv) =0,

=0
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we obtain 'V*(V1v)" = 0 for all n > 2. On the other hand,
Rva—i-lvn _ v2 (V—(2—(a+1)) )n
= = (v (1— a) n _2V;(1—a)vn—1 +V;(1—(x)vn—2) ]
-
Since

v:(l—a)vm Zkl a m ] ’UJ Zk,l a _] o,

and

ke ?(0) =77 k() =(1-a)r' ™" and kY(2) = Wﬂ

2 b
we obtain for n = 2 and « > 0 that

(Rva+1 ) (kl a( ) . klia(l))’uo _ 70‘(1 — a)vg.

T2 T orlta

Therefore, BV 1y £ Eyo(Eyly)n. However, there is an interesting connection between the Riemann-
Liouville and Caputo fractional difference operators: if v € F(Ry; X) and 0 < « < 1, then

Rva(vlv)n — v‘lr(v;(l—a) (vlv))n — (v;(l—a)(vlv)n _ v;(l—a)(vlv)n—l)

R N

(Cva,un _ Cvavn—l)
— Vl(cvozv)’n,,

for all n € N. We summarize the above properties in the following Proposition.

Proposition 2.6. If0 <a <1 and n € N, then

(1) cVotly® = V*(Viv)",
(2) Bvetlyn = VI(EV2)" and
(3) Bve(Viv)n = Vi V).

The next result relates the Caputo (respectively, the Riemann-Liouville) fractional derivative and the
Caputo (respectively, the Riemann-Liouville) difference operator. For the Riemann-Liouville fractional
derivative, the case 7 = 1 can be found in [38].

Theorem 2.7. Let 0 < a < 1.
(1) Ifu:[0,00) = X is differentiable and bounded, then

(2.16) / T u(t)dt = VU,
0

for alln € N.
(2) Ifu:[0,00) = X is locally integrable and bounded, then

(2.17) / TR Oeu(t)dt = BVOun,
0

for all n € N.
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Proof. Let n € N. The Fubini’s theorem implies

[ aworava = [ i)
0 0

/Ooopm)/tgl (6 — syt (s)dsdt

= [ w6 [ ittt - ieds
0 s

= / u’(s)/ e tren) (L) %91—a(r)drds
0 0

n

/Oou’(s /Oo i() g1 alr)drds

- z YAl >* [ (;)H S ————

_ Z / o st [ o -a(r)dr
- ;kmn—j) / o (5)ed (5)ds.

Since u is a bounded function and

d%(t) - % (Ph—a (8) = Pk (D))

for all £ > 1, we obtain by integration by parts that

/OOO pJT'(S)u/(s)ds = % (/000 p; (s)u(s)ds — /ooo P;l(s)u(s)ds) _ % (uj B uj_l)

which implies that

(2.18)

n

| st = 3B - () = V0 () = v

3=0
and the proof of (2.16) is finished. The proof of (2.17) follows analogously.
Now, for a family of operators {S(t)}+>0 C B(X), we define the sequence
S"x = /OO pn(t)S(t)xdt, n € Ng,x € X.
If ¢: Ry — C is a continuous and bounged function
= /00 pn(t)e(t)dt, n e Ny,
and we define the discrete convolution i

(cxS)" Zc” kSk  neN.

Finally, we recall that for a vector-valued functlon f Ry — X, the sequence f™ is defined as

fm ::/O o (6)f(t)dt, mn € Ny.

The proof of the following result is given in [38] for 7 = 1.
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Theorem 2.8. Let ¢ : Ry — C be Laplace transformable such that é(1/1) exists, and let {S(t)}i>0 C
B(X) be strongly continuous and Laplace transformable such that S(1/7) exists. Then, for all x € X,

/OOO pr () (e S)(t)xdt = T(cx S)"x, n € Ny.

Proof. If g : RS‘ — X is a bounded and locally integrable function, then

OOT 1 © L /t\"1 R N 1 (=)™ | n
st = [Tt (L) L= T [T et Samar = TS oo 1,
which implies
| aaessywe = TZEL @m0 |y
= s

Since
kQ 0 o k
SV ®z |1 = %&A)x = (4)’@/ e’%ttkS(t)xdt:k!(—l)k/ e’%t%S(t):cda
T T 0 0 :

we obtain

-

[SON)) Bz |\ _1= El(=1)kr* /Oop;(t)S(t);z:dt:k!(—l)kaHSkx,
0

for all k € Ny. Similarly, [A(/\)] k) = El(—1)krkt1ck for all k € Ny. Therefore,

/ o () (ex S)(t)xdt = _ ( ) )R (= Kl chnfk(—l)kk!TkTSkx:TZC"ikSkI.
0 — \k

! k=0

([
Since go(A) = 55, for all Rel > 0, we obtain

= [ a0 = 2k

for all n € N, and by Theorem 2.8, we have the following Corollary.

Corollary 2.9. Let o > 0. Let {S(t) }+>0 C B(X) be strongly continuous and Laplace transformable such
that S(1/7) exists. Then for all z € X,

/ or (1) (ga * S)(t)xdt = Zk"n §)S%z, n € Ny.
0
Moreover, since (go * gg)(t) = gat+p(t) for all «, B > 0, we obtain by (2.13),(2.14) and Corollary 2.9
k() =7 / Pr(t)gasp (D)t = 7 / ) (g0 * 95) (1)t = T_Zokf(n ~ )5 =2k = DRG).
j= j=

which implies
(2.19) K (n) = (ga > gp)" = D ke (n — 5K (),
j=0
for all n € Ny.
The proof of the next result follows similarly to the proof of Theorem 2.8. We omit the details.
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Proposition 2.10. Let f : R, — X be Laplace transformable such that f(1/7) exists, and let {S(t)}+>0 C
B(X) be strongly continuous and Laplace transformable such that S(1/7) exists. Then,

/000 pr () (S * f)(t)axdt = 7(S* )z = TZS"_jfj, n € Np.

=0

3. NUMERICAL SCHEME

Let a, 8 > 0. For n > 1, we define the bounded operators Dy 5: X — X by

1
3.20 no = — A)"ABOAY — A)" ),
(320) o= g | TN )
where r(z) := i and v denotes a suitable path that connects —ioo and +ioo with increasing imaginary

part. If fop5(2) == 79711 — 2)* P ((1 - 2)* — 7@A)"" | then fa,p is a holomorphic operator-valued
mapping on |z| = r < 1, and therefore, Cauchy’s formula implies that

(3:21) fap(z) =Y apPz",
n=0
where
a 1 — (]' — Z)a_ﬂ o a g1
an’ﬁ:Tm_ . 8 172n+1 (1—2)*—=71%A)" " d=.

It is easy to see that

a,f _ n+l
(3.22) ay’” =Dy

for all n > 0. Now, we define F,, g(z) as the Laplace transform of S, 5(t), that is,

Fop(2) ::/0 €_Ztsa,5<t)dt

Let Ly 5 : X — X be the generating operators satisfying

| 11—z
> rt = s (1),
n=0

An easy computation shows that

2 (5 = sl

and then, by (3.22), we conclude that

n _ n+1
(3.23) o =D0s
for all n € Ny. As a consequence, we have the following result.

Theorem 3.11. Let o, 8 > 0. Assume that A is the generator of an («, B)-resolvent family {Sa,5(t)}i>0
resolvent family. Then

o0
(3.24) Do = [0S a(0mdt,
0

for alln € N and x € X, and therefore
n  __ n+1
a8="Dag-
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Proof. Since

1—2 1 [ _a-»
L == =S, (t)dt
Zagz N e R e

and
1 _a-» >
Lt proen
n=0
we obtain

ZLQBZ = / o (1)S 5 (1),
n=0

which implies that

2o | AOSws0,
for all n € Ny, and the result follows from (3.23). O

3.1. Caputo fractional difference equations. Now, for 0 < a < 1, we consider the equation (1.1):

Ofu(t) = Au(t) + f(t), =0,

with the initial condition u(0) = ug. Multiplying this by p7,(¢) and integrating over [0, 00) we obtain by
Theorem 2.7 the backward Euler scheme

(3.25) cVou" =Au" + f*, neN,

for all n € N, with the initial condition u® = ug. We first assume that A is a sectorial operator and

u® € ker(A), that is, u® € D(A) and Au® = 0. By Definition (2.12), (Viu)? = 0, which implies that
cVeul = v-0=a)(vly)® = 0. Moreover, if fO = 0, then we can consider the equation (3.25) for all
n € Ny. By definition, we can write

n—1
V" = V (1—a) v u Zkl a _ vl j_ Zkl o 7’L ])(VI ) —a(un _un—l)’
j=1

for all n € N.
Thus, the scheme (3.25) is equivalent to

(326) (TiafA)un o 1 Zkl a o )j+fn7

for all n € N. We notice that this is an implicit scheme, and to obtain «™ from u"~!,...,u® we need

to solve (3.26). To this end, since A is a sectorial operator, we can take 7 small enough (for instance
max{0,w}T® < 1) in order to obtain that (77 — A) is invertible.
Now, we will write (3.25) in terms of generating functions. We set for 5 > 0 and |z] < 1

S Y W e e

n=0

Multiplying (3.25) by 2™ and summing up in n € Ny, we obtain

(3.27) i cVunz" = AU (z) + F(2).

n=0



12 RODRIGO PONCE

Since
Z(Cvaun)zn — ZV:(I_Q)(V}_U)nzn
n=0 n=0
= S (SR vt | e
n=0 \j=0
= (Z kl‘%n)z") (Z(Viu)”z")
n=0 n=0
= Q72 Z(Viu)"z"
n=0
Now, since (V1u)? = 0 we obtain
1 n._n __ n n—1\_n __ 0
T;)(VTU)Z —;;(u —u" )z —;((1—Z)U(z)—u).

Hence (3.27) reads

T

(MQIQ(Z) - A) U(z) = %Ql*a(z)uo +F(),

which is equivalent to

(3.28) (I—-Q*(2)A)U(z) u’ 4+ Q% (2)F(2).

T1-z
Since A is a sectorial operator, and Re((1 — z)/7) > 0 for all |z| = r < 1, we obtain that (t—z)a =
Q%(z) € p(A4), (I — Q*(2)A) is invertible and we can write (3.28) as

1

(3.29) U(z) = — (I - QY(2)A) '’ + Q¥(2)(I — Q*(2)A) ' F(2).

Noticing that Q%(z) = ( - ) =7%1 — 2)”%, we can write

1—z

1 - a— e o —
(- QDA = (1= 2" (1= 2)" =4 = faal2).
By (3.21) we obtain
fan(z) = Z atz"
n=0
where, for n € Ny,
a,l 1 (1 — z)o‘_l o o _1 1 / 1 N .
1_ L a-2)"" _ B _ 1 1 |
a omi Joy 7 (L=2)* =704)  dz = T e[~ QU A)

The relation between af'! and D[ | given in (3.22) gives al' = DZjl for all n > 0 and thus,

(330 (=@ A = faa(z) = Y DR
n=0

On the other hand, since (I —Q%(z)A)~! is holomorphic on |z| < 1, Q% (2)(I — Q%(z)A)~! is holomor-
phic as well on |z| < 1. Since,

Q*(2)I — Q*()A) ' =Tfon(z) =7 Z ay®2" =1 Z DZI}Z”,
n=0 n=0
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we obtain
(3.31)  Q%2)(I-Q%=2)A)"'F(z) =7 (Z Dgf;z"> (Z f"z") =7y | Y D | e
n=0 n=0 n=0 \j=0
Replacing (3.30) and (3.31) in (3.29) we obtain
Uz) = Z DZjlz"uo +7 Z ZDZ’J;l_jfj 2"
n=1 n=0 \j=0

which implies that
u = DZFUO + TZDZ,J&ijj’
j=0
for all n € N. We have proved the following result.

Theorem 3.12. Let A be a sectorial operator in a Banach space X. If ug € ker(A) and f° = 0, then the
fractional difference equation

(3.32) Vo™ = Au™ + ", neN,

with the initial condition u® = ug, has a unique solution given by

(3.33) u" =D ug + 7y DI fI,
§=0

for allm € N.

In the next result, we assume that uy merely belongs to X, and we show that even if u° is not in D(A),
we can obtain existence of solutions.

Theorem 3.13. Let 7 > 0. Let A be the generator of an (o, o) -resolvent family {Sqa,q(t) }1>0 exponentially
bounded with ||Sa,qo(t)|| < Me*t, where w < L. If u® € X and f is bounded, then the fractional difference
equation

cVur = Au + f*, meN,

Y = wg, has a unique solution given by

with the initial condition u
(3.34) u" = Sy 1uo + 7(Sa,a * )",
for allm € N, where So1(t) = (91— * Sa,a)(t).

Proof. As in the proof of Theorem 2.8, we obtain S} ;x € D(A) for all n € Ny and 2 € X. By Proposition
2.2 we obtain

t
Sa1(t)r =z + A/ ga(t — 8)Sa1(8)xds,
0

for all £ > 0 and z € X. Multiplying this equality by p] () and integrating over [0,00) we have by
Corollary 2.9 that for all j > 0,

(3.35)

SI iz = /O P (t) S (t)iedt = /O o7 (t)dt + A /0

oo

J
05 () (go * Sap)(W)xdt =2+ A kI (j = 1S, .
=0

By definition, for all n € N, we have

YV (Sanz)" = V17 OVL(Se12)" =D k(0 — j)(ViSaax)’,

=0
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and by (3.35) we get

. 4 e
(V1 Sa12)) = <SJ ar = Shitw) ==Y k(- D)S w——Zka —1-0)S, @
=0

for all j > 1.
If Ro(t) := (ga * Sa,1)(t), then the Corollary 2.9 implies that RY, = >7_ k2(j —1)S., ;. Since (g1—q *
Jo)(t) = g1(t), the Corollary 2.9 implies again that for all n € N,

n

Zkl “(n—j Zka Sear = > ki *(n—j)R]

Jj=0 Jj=0

- / (1)@ * Ro)(t)dt
_ /Ooo 57 (8) (g1 * Seur) (B)dt

= > k(n—5)Sie
=0

Since kl(n) = 7 for all n € N, we get

n

J n
(3.36) SR =Y kG- DS =7 S
j=0

=0 1=0

Since Zj;lo vl =0 for all I € N, we have

n —1
S k=) Sk~ 1- 08} 1x—zkl “(n—j Zk“ 108, = DR R,
j=0 =0 =1

and thus

n

j—1
Zkl *(n—37) Zk"‘j—l—lS CL'_TZSJ
j=0 1=0

for all n € N, which implies that

n J
cV¥(Sa12)" = éZki_a(n—j)Zk G-0S 137——21{:1 *(n —j) Zk"‘]—l—l a1$
§=0 1=0
n n—1
= AY Sla—-AY Sl
3=0 3=0

= ASlz,
for all n € N and x € X, which allows us to conclude that
c VS, quo = ASE quo.
On the other hand,
oV (Saa* )") = ViU IVU(Saax f)"
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We observe that by Proposition 2.10

. J . 1 o0 1 .
(337) (Sox P =SS0 == [ 5O DO = 2(Sna s 1)
=0

T

Since
Se,a(t)r = go(t) + A(ga * Su.a)(t)z,
for all z € X, and ¢t > 0, we obtain
(Sa,a * f)(t) = (ga * f)(t) + A(goc * Soz,oz * f)(t)7
and, multiplying this equation by p7 () and integrating over [0,00) we get by Proposition 2.10 that

" (Saax [ = / TS (D)t = / (0 (ga * F)(0)dt + A / T (O)(ga * Sae * DD,

and by Corollary 2.9 we have

(3.38) (S * [ = % [Z K2 = DF +AY k(= D) (Saa * f)l] :

1=0 1=0
The equation (3.38) implies that
1 J J
OV (Snf)) = 7 SR 0)| RGO+ AS R (S )]
=0 1=0

=0

SR DRG0+ ARG -1 (S )]

=0 =0

Analogously to equation (3.36), we can prove that

Zklan jzj: *G=0f Z Zklo‘n ]Zka]—l—l —TZ]”
1=0

7=0
n J
kvl—_a(n_j)zk (J = 1D(Sa x_TZ aa
j=0 1=0
and

j—1 n—1

Zkl =)D kG =1 =D (SaaxHr=7> (Saa*f),

j=1 =0 =0

which implies, by (3.37), that

OV (Sara f)) = 2f" + 2 A4S ) = Zf" + Al x )
for all n € N. We conclude that if u™ := S juo + 7(Sa,a x f)", then
Ve W) = oV (58 1uo + 7(Sa,a * f)") = ASE jug + TA(Saa * )" + [ = Au" + [T,
for all n € N, that is, u™ solves the equation
eV =Au" + f", neN

The uniqueness, follows from the uniqueness of the resolvent family {Sq o (t)}:>0 generated by A. O
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If A generates a Cp-semigroup {T'(t)}¢>0, then two subordination principles show that A generates
an (a, 1)-resolvent family {Sq 1(t)}+>0 (see [7, Theorem 3.1]) and an (a, «)-resolvent family {Sq,q(t)}i>0
(see [30, Theorem 3.1]), given, respectively by

(3.39) Spi(t)x = / O, (r)T(rt*)xdr and Sy o(t)z = a/ t* L d, (1) T(rtY)adr t>0,2 € X,
0 0

where @, is the Wright type function ([45, Appendix F])
> n
(—2)

o = = [ pter—21g
o(2) nz:% nll'(—an+ 1 — a) LH ¢ K

where v is a contour which starts and ends at —oo and encircles the origin once counterclockwise. There-
fore, we have the following result.

Corollary 3.14. Let A be the generator of a Cy-semigroup {T(t)}i>0. If uo € X and f is a bounded
function, then the fractional difference equation

cVeu" = Au™ + f*, mneN,

0

with the initial condition v’ = ug, has a unique solution given by

u" =Sy uo + T(Sa,a* )",
for alln € N, where {Sq1(t) >0 and {Sa.o(t)}i>0 are given in (3.39).

Remark 3.15. We notice in Theorem 3.12 that if A is a sectorial operator which generates also an (o, «)-
resolvent family {Sp.o(t)}t>0, then by Theorem 8.11, D4 = S» 4 and DLEY = S% for alln € N, which

a,l T
means that in this case the solutions given in (3.33) and (3.34) are the same.

3.2. Riemann-Liouville fractional difference equation. Now, we consider the fractional difference
equation for the Riemann-Liouville difference operator

(BVeu)™ = Au™ + f*, neN.

Thanks to the properties of {S,. 5(t)}t>0 given in Proposition 2.2 and Theorem 2.7, the proof of the
next result follows similarly to the proof of Theorem 3.13. We omit the details.

Theorem 3.16. Let A be the generator of an (o, a)-resolvent family {Sqa,o(t) }+>0 in a Banach space X.
Ifu® € X and f is a bounded function, then the fractional difference equation

(BVou)™ = Au™ + f*, n €N,

with the initial condition u® = ug, has a unique solution given by
(3.40) u" = Sy quo + 7(Sa,a* f)",
for alln € N.

The proof of the next result follows similarly to the proof of Theorem 3.12. We omit the details.

Theorem 3.17. Let A be a sectorial operator in a Banach space X. If ug € ker(A) and f° = 0, then the
fractional difference equation

(3.41) Ryey™ = Au™ + ", neN,

0

with the initial condition v’ = ug, has a unique solution given by

=Ditlug+ 7 Z Dt f

for allm € N.
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4. ERROR ESTIMATES FOR SECTORIAL OPERATORS

In this section we study the convergence of the method introduced in Section 3 and we compare the
solution u™ to the equation (3.32) and the solution u to the equation (1.3) at time t,, = n7, where 7 > 0.
We prove here the result for the Caputo fractional derivative. The Riemann-Liouville case is analogous
and we omit the details.

For a closed operator A € Sec(0, M), we will consider the following path I'; : For § < 6 < 7, we take
¢ such that %(b < Fa < ¢ < 0. Next, we define I'; (see Figure 1) as the union '} UT'%, where

1, . 1
Il .= {te’wa T—p <Y < ¢} and T?:= {rei“ﬁ/a Y < r}.

FiGURE 1. Plot of path I'y.

The next result will be useful to prove the main theorem in this section. A similar result can be found
n [14].

Lemma 4.18. Let A € Sec(0, M) and T be the complex path defined above. If > 0, then there exist
positive constants C,,, depending only on «, such that
zt

/e
r, | 2"

¢ 2
C, = 2¢/ P CrA ) R —
< — — cos(¢/a)
Proof. On I'} we have

- (peontpsony o
/ < ‘|dz| < 2(;5/

On the other hand, since 7¢ < ga < ¢ we obtain § < ¢ < 7, and thus cos(¢/a) < 0, which implies

that on I'? we have
oo rtcos(¢/a) 00 th—1
|dz| < 2/ eildr < 2t“/ erteos(¢/a) gy — 9
1 rH

|dz| < Cot ™!

for all t > 0, where

dT/J 2¢/ COS(w/a)dwtu L

cww/u)

zt

e
rz |z

0 —cos(¢/a)’
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/e
Iy

A

We conclude that

zt

2

’dz| < 2¢/¢ eSOy = )L
- — —cos(¢/a)

O

Now, we notice that if z = %ei‘b/a, then 2% = t%ew and arg(z®) = ¢ < 0, which means that z* € p(4),
because A € Sec(f, M). Hence, by using the path I' = T', the inversion formula of the Laplace transform
allows to write

1
(4.42) Sa,p(t) = o1 /1“ 2P (22 — A)7ldz, t>0.
Given 0 < e < 1, the space of all continuous function f : [0,00) — D(A®) endowed with the norm
Iflle :== SUp;>g lf®e = SUP;>0 ||A% f(t)|| will be denoted by C([0, 00), D(A®)).

Theorem 4.19. Let 0 < a,e < 1 such that 1 < a(l +¢) < 2. Suppose that f € C([0,00), D(A®)). Let
A € Sec(0, M) which generates an (o, ) resolvent family {Sq o (t)}i>0. Let T be the complex path defined
above. If ug € D(A®), then for each T > 0 there exists a constant C = C(T) > 0 (independent of the
solution, the data and the step size) such that, for 0 < t,, <T, there holds

(4.43) lu™ = u(ta)ll < CTtr= =" (fuolle + [1f]]<) -
Proof. The solution to (1.1) is given by
u(t) = Sa1(t)uo + (Sa,a * f)(1),
and by Theorem 3.13, the solution to (3.32) is given by
u" = Sy 1uo + 7(Sa,a* )"
Fix n € N such that 0 < t,, < T, where t,, := m™n. Then, we have
(4.44) [ —u(tn)l| < 1(Sa1(tn) = S8 1)uoll + [(Saa * £)(tn) = T(Saa * f)" | := 11 + L.

To estimate the first term, we notice that

< / T O(San () — Sen ()0l dt.

Now, if I' = T'; | then, by (4.42) we can write

1
(Sa1(t) = Sa1(tn))uo = =— [ (*F =€)z (2 — A) tupdz
2mi Jr
1 (ezt _ GZt") _
- S Py | 1 .
3t /. p; 2%(z ) T updz

Since
(4.45) 2%z —A) P = (2" —A)TTA+ T = A - A7+ 1 and A(z* — A7t = AV E(2 — A)7tAT,

we have

1 2t zty 1 zt _ oztp
(Sat(t) — Sat(tn))uo = — (€ =e™) ode s 1 [ =)

AVE (20— AL ASygdz.
omi Jp 2 omi Jp 2 (2% = A)™ Afugdz

Since h(z) := @ has a unique removable singularity at z = 0 and ¢ > ¢,, h(z) can be analytically
extended to the region enclosed by the path I'%t := Ffi where I'® is the path given in Figure 2, and
therefore
1 (ezt _ eztn)
% TR z
1 (ezt _ €Zt") 1 (ezt _ eztn)
(e —em) /F s

— updz = lim —
2w Jr z R—00 271 z

ugdz = 0.

Since

updz,
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we obtain
1 (ezt _ €Zt")

— dz = 0.
27 T z Hodz

FIGURE 2. Plot of path I'Z.

On the other hand, since A is a sectorial operator, we get by (2.10)

”Alfe(za 7A)71$|| < K(M+1)175 HiL’H

|Z‘O‘E ’
for all x € X, which implies that

1(Sa1(t) = Sa,1(tn))uoll <

K(M + 1)1—5 / ‘€Zt _ €Zt"| ||Asu0|| |dz‘
r |2

27 |z|2e
By the mean value for complex valued functions, there exist #y,¢; with 0 < ¢, <ty < t; < t such that

eZt,eZtn
< - ) ().

Therefore, by Lemma 4.18 we obtain

[(Sa,1(t) = Sav,1(tn))uoll

IN

K(M 4 1) (t — t) | Ao / ol le
r

27 |z|oe
K(M+ 1)t —t,)

- 27
Since 0 < a,e < 1 and ¢, < tg < t; we obtain t?sfl < t(‘)‘E*l < t2*~1 and thus
K(M+1)'=¢(t —t,)

s

Caltg™ 15771 A%uo .

1(Sa1(t) = Sa,1(tn))uoll < Catn™luoll.-

We conclude that
(o) oo
| PrO1Sa(t) = Saa(ta)uolde < Cati A%l [ A0t ~ bt
0 0
Since [, pr(t)dt =1 for all n € N, an easy computation shows that

(4.46) / T ()t — )t = / T ()bt — ty = tops —tn = T,
0 0

which implies that

/0 TS (t) — Sar(t))uolldt <

K(M +1)1-¢
s

KCo(M +1)t—2

tn Hluolle.
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On the other hand, the second term in (4.44) can be written, by Proposition 2.10, as

1S ® F)(tn) = 7(Saa % )] = H / (S * D(t) — (Sae f)(t)]dtH |
Moreover, we can write
(S * F)(t) — (Sorm % f)(ta) = / Sualt = 1) )dr — [ Sultn — 1) f(r)dr
0 0

- / (Sosalt =) — Sl — 1) F ()l + / St — ) f(r)dr
0 t

= J1 + Jo.

Now, we estimate the integrals J; and Jo. In order to estimate J; we estimate, for simplicity, the norm
|(Sa,a(t) — Sa,a(s))z|| for x € D(A®), with ¢t > s > 0. By using the path I', we can write

1

(Sa,oz(t) - Sa,a(s))x = Tm F(GZt — ezs)(zo‘ — A)flajdz,
By (4.45) we have
1 zt _ ,zs
(Saya(t) = Saals))z = —— wza(za — A)tadz
27 Jp z%
1 zt _ ,zs 1 zt _ ,zs
R Y G PR\ SR D E T Sy (N Gl P
21 Jp z% 21 Jp ze
Since 0 < a < 1, the function
2zt _ ,zs zt _ ,zs
go) = =) _ (e i

has a unique removable singularity at z = 0 and thus

1 zt _ ,zs
L) =,
21t Jr z¢

(following the same method used to prove that [, h(z)ugdz = 0). Next, we notice that if 2 € D(A®),
then the sectoriality of operator A implies that

A€
(447) ”Alfa(za o A)71A€LEH S [((]\4+ 1)175 || |xg||7
Za

which gives

1 _e [ e — e[ A%

aat - Pa,a < 7K M 1 e d
I(S0t) = Sualollall < g+ 1y [ atay
1 1 |ezt _ezs| 1
= %K(M"‘l) E/F 2| |Z‘a(s+1)_1|dz|||Ast-

The mean value theorem implies the existence of tg,t; with 0 < s < tg < t; < t such that

|ezt _ ezs'

2] < (t—s) (|l + |e"]) -
z
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Since 0 < (1 +¢) —1 < 1and s <ty <t <t we have t(f‘(1+5)_2 < tg‘(1+8)_2 < s*(1+9)=2 By Lemma
4.18 we get
1 1 |efo%] + |e"?| g
1(Saa(t) = Saals))zll < 5 KM +1)75(t ~s) g W\MHA x|

<
2w
< %K(M F )5 (¢ — )50+ 2 ) A%y

< KM+ 1) ) (g U 4 p U7 | Ay

Replacing t by ¢t — r and s by t,, — r we can estimate J; as

/0 | (Saalt = 1) = Saalts — ) f()dr < &

™

K(M +1)'75(t — ) /Otn (tn — )72 A% f ()| dr

tn
S C”fHE K(M + 1)1—€(t _ tn) / (tn _ 7,.)04(1+E)—2d,r
n 0
Callf —e
= Celle g0t 4 1)t~ 1) gacrey (D01 +2) — 1)
Call flle - Dla(l+e)—1)
— ZallVle pronr 1 (t—t, ta(l—i—s) 12\ &\ Te)— 1)
o DM DT ) T(a(l +2))
Call £l 1- - 1
= ——KM+1)"°(t—t, L A U —
O eSS
Since
(oo}
(4.49) J A e R
0
we have
/OO o) /t"(s (t— 1) — Sualtn — N fyr|at < CoMle g pryie 1 et
o " 0 e ek - T all+eg) -1 "
Callflle - 1 1
< ——T*K(M+1) " —-—7to ",
- ™ (M+1) a(1+5)—1T”
Finally, we estimate the integral Jo. First, by (4.45) we can write
Sa,a(t)r = = e (2% — A)ladz = = G—thdz + = G—ZtAl_E(zo‘ — A Afzdz
L 27 © 27 Jp 2 2mi Jp 2%

for all x € D(A®). The first integral in the last equality is equal to zero, because the function z — %z =

%zl_o‘ has a unique removable singulary at z = 0. On the other hand, by (4.47) and Lemma 4.18 we
obtain

K(M+ 1)t~ le?t] KCo(M +1)17¢ B
1Sa.a(®)ell € =—5=— | fremes I4%allde] < ===+ | 4%,
for all ¢ > 0 and = € D(A®). Therefore,
¢ 1—e t
K o 5 M 1 _
HSoz,a(t N T)f(’l")”d?‘ < C ||f|| 2( + ) / (t _ r)a(l—i—a) ldT‘.
tVL 71- t/,L

‘We observe that

t t tn
/ (t _ T)a(1+€)_1dT — / (t _ T)a(1+e)—1dr _ / (t . T)a(H_E)_ld?‘.
tn 0 0

Since

t
— 1 a €
[ = = a1+ )07 a5 (0 = D00+ ooy () = 20,
0 Oé(l + E)
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for all t > 0, z +— z*(*+9)~1 is an increasing function and t,, < t, we obtain

t tn
/ (t— 7’)0‘(1+€)*1dr = #ta(H»e) _ / (t— T)a(1+s)—1dr <
¢ a ) 0

1 (1o(1+e) _ gali+e)).
(1+¢

a(l+e) "

n

We conclude that

[ |Salt — ) f () |dr <

for all t > 0. An easy computation shows that

KCa|flle(M+1)'° 1

t(x(l-l—e) _ ta(1+e)
27 a(l+ 5)( " )

<. a(l+e) b rette
pr ()t dt " F(n+1+a(l+e)).
O .

E((Zii)) < n*~1 (see for instance [19]), and 0 < (1 +¢) —1 < 1 we obtain

Fo(l+e) Pn+1+a(l+e)—1)
T 1 1 — a(l+e)—1
= (n+1+a(l+e)) TT T 19)

<t td O Fa(L 4 )i O

Since for 0 < A < 1 and n > 0,

(n+1)(n+a(l+e¢))

for all n € N. Moreover, the function z +— x*1t9)=2 is a decreasing function, which implies that
pellHe)=2 4a(4+6)=2 ¢ il n € N, and thus

n+1
a(l+e)
: P(n+1+al+e) < toateD pal+e)renlo

n!
By (4.48), we get

e} Ta(1+£)
/ pr () (12049 — ga(+9)) gy —
0

D(n41+a(l+¢)) — 20+ < o+l 4 (1 + E)thsrll%)*l.

Since 207! = (n 4 D)2 72 < g7l ol =2 < 90049 o allp e Ny and 0 < £, < T
we obtain

/ prO(E 0+ — 120+9) gt < (14 2a(1 + €)o7,
0
and we conclude that

/0 o) / 1Swalt — r)f()dr <

p (t) (ta(1+5) 7 tg(1+5))dt

KCo|lflle(M+1)'7¢ 1 = -
i,

27 a(l+e "
o KCulfJ-(M £ )" (L4 20(1 )T
- T a(l+e) no
Finally, the constant C = C(T) is given by
1—¢ [} o
o KC.(M +1) max 1, T ’(1+2a(1+€))T
T a(l+e)—1 a(l+e)

5. NUMERICAL EXPERIMENTS

In this section we give some numerical experiments on the behavior of the Caputo fractional derivative
0§ and the Caputo difference operator (¢V®)™. Let o« > 0 and m = [«a]. We assume that ¢ € [0, 1]
and we take 7 = %7 where N € N is given. We remark that, n! cannot be represented as a 64-bit
integer for n > 20 or as a 64-bit floating-point number for n > 171. The Stirling approximation formula
n! ~ v/27n"+2e~" can be used to calculate n! for large values of n (see for instance [55, Chapter 2]). On

the other hand, since [, o] (¢)dt = 1, we notice that if f has a bounded derivative, then by (4.46) we

have [|f" = f(ta)ll = [|f5~ PR (F(®) = F(ta)at]] = || ;™ o7 (., £/(s)ds ) dt]| < 7]1f]|oc, and then, in
the numerical experiments, f™ = [° p7 (t) f(t)dt can be computed by using f(t,) = f(nr).
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We first consider the function u(t) := tP, where p > m. By [31, Chapter 2, Property 2.1] we have

cOfu(t) = %. If o =1 and p =4, then m =1 and 061/2u(t) = 1§§fﬁ Moreover,

n

J i1 +n—j)uw —ui!
a, \n (1—) 1 kla u u ]
(EF™)" = V707 r =3 k=) \f}jm PR

for all n € No, where v/ = 7. In Figure 3, we have the Caputo fractional derivative ¢dfu(t) and the
Caputo difference operator (¢V*u)™ on the interval [0, 1], where 0 < n < N and N = 20,50 and N = 100,
respectively.

=20 =50 =100
2.5 T T 2.5 T T 2.5 T T
2 2 2
1.5 1.5 1.5
1 1 1
0.5 0.5 0.5
0 07 01
0.5 e 0.5 S 0.5 S
0 0.2 04 06 08 1 0 0.2 04 06 08 1 0 02 04 06 08 1

FIGURE 3. ¢0fu(t) (line) and (¢V*u)™ (circles) for N = 20, N = 50 and N = 100.

Now, we illustrate the exact u(t) and the approximated solution u™ (given in Theorem 3.13) to a
fractional differential and difference equations of order o = % If f(t) = t?e~¢, then the solution to the
Caputo fractional differential equation

1
(5.49) O2u(t) = —u(t) +t?e”t, t>0, wu(0)=1,
is given by
t
u(t) =es 1(t)+/ ex 1(t—s)s Zesds,
2 0 272

where ey 4 (1) == E%’l(—t%), and ey 1(t) == t%_lE%,%(—tf).
In Figure 4 we have the exact and approximated solution to (5.49) on the interval [0,5]. Here, we
consider 7 = 5/N for N =20, N = 50 and N = 100.

N=20, 7=0.25 N=50, 7=0.1 N=100, 7=0.05

u(t)and u
u(t) and u"
u(t) and u”

FIGURE 4. The exact solution u(¢) (line) and the approximated solution u™ (circles) to
(5.49) for N =20, N = 50 and N = 100.

Since the exact solution to (5.49) is given by means of Mittag-Leffler functions (defined as infinite
series by (1.5)), in the numerical experiments, the exact and the approximated solution have been taken
as finite sums of these power expansions (with 100 terms).

Next, in Figure 5 we have the absolute error e, for N = 20, N =50 and N = 100.
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N=20, 7=0.25 N=50, T=0.1 N=100, 7=0.05
?
0.04 0.04 f
aykk‘\ !
0.03 L% 0.03
0" AF } o° l
002/ al 0.02 ¢
¢y )
0.01F L % 001 \f“\
¢ 1{’\\/\
0 L L L | 0 L °=‘ L L L L L L
0 5 10 15 20 0 10 20 30 40 50 20 40 60 80 100
n n n

FIGure 5. Error e, to (5.49) for N = 20, N = 50 and N = 100. The results are in
accordance to Theorem 4.19, which means that the error goes to zero as 7 | 0

.,

log(error)

0 2‘0 4‘0 6‘0 8‘0 1(;0 12‘0
FIGURE 6. Log Error for 1 < n < 120.

In Figure 6 we have the error as a function of ¢,, for 1 < n < 120 using a log scale on the vertical axis.
As before, we take o« = %
Finally, we consider the initial value problem

o 0%u(x,t)
81‘, U(l‘7t) W, tZO,JJE [0,1}7

(5.50) u(0,t) = 0, t>0,

u(l,t) = 0, t>0,

u(z,0) = ho(x), xz €[0,1],
where ho(x) = (1 — ). The solution to (5.50) is given by (see for instance [54]):

8 2 2 00\ o3

(5.51) Z =) 55 Bat (= (20— 1)°7°) sin((2n — 1)mz).

Take a = % In Figure 7 we have the approximated solution u™ := u"(xg) given by

u”:/ o1 (H)u(zg, t)dt
0

for 1 <n < N at xp = 0.3 on the interval [0,0.1], where u is defined by (5.51). We take N = 20,50 and
N = 80. Again, in the numerical experiments, the infinite series in (5.51) are taken as finite sums of the
power expansions (with 100 terms).
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XOZO.S, N=20 X0:0.3, N=50 XOZO.S, N=80
5 0.2 0.2
0.15 0.15
0.1 0.1
0.05 1 0.05 -
I I I I 0 I I I I 0 I I I I I

0 0.020.040.060.08
t

0 0.020.040.060.08

t

0 0.020.040.060.08 0.1
t

FIGURE 7. Exact (line) and approximated (circles) solution u and u”, respectively, for
N =20,N =50 and N =80 at z¢ = 0.3.

Finally, in Figure 8 we have the approximated solution v™ for 1 < n < 80 at o = 0.1, zop = 0.5 and
xo = 0.9 for ¢ on the interval [0,0.1].

0
0 0.020.040.060.08

x =0.1, N=80
0

0.2 f

0.15

0.1

0.05

x =0.5, N=80
0

x =0.9, N=80
0

0
0 0.020.040.060.08

0
0 0.020.040.060.08 0.1

FIGURE 8. Exact (line) and approximated (circles) solution u and u™, respectively, for
N =80 at 9 = 0.1,0.5 and g = 0.9.
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