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Abstract. In this paper we study subordination principles for frac-
tional differential equations of Sobolev type in Banach space. With the
help of the theory of Sobolev type resolvent families (known also as
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the existence of mild solutions for this kind of equations. We study si-
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1. Introduction

The problem of the existence of mild solutions to fractional differential
equations of Sobolev type in the form of

Dα
t (Eu)(t) = Au(t) + Ef(t), (Eu)(0) = Eu0,(1.1)

has been extensively studied by several authors in the last years, see for
instance [13, 14, 15, 19, 22] and the references therein. Here, A and E are
closed linear operators defined in a Banach space (X, ∥ · ∥), u0 belongs to
D(E), the domain of E, f is a suitable function satisfying f(t) ∈ D(E) and
Dα

t denotes the Dα
t for 0 < α < 1.

The change of variable v(t) = Eu(t) allows to write the initial value
problem (1.1) as

Dα
t v(t) = Lv(t) + g(t), v(0) = v0,(1.2)

where L = AE−1, with D(L) = E(D(A)), g(t) = Ef(t) and v0 = Eu0.
Then, the mild solution to problem (1.2) is given by ([20])

v(t) = Sα(t)v0 +

∫ t

0
Pα(t− s)g(s)ds,

where {Sα(t)}t≥0 and {Pα(t)}t≥0 are, respectively, the α-times and the α-
resolvent family generated by L, whose Laplace transforms satisfy

Ŝα(λ) = λα−1(λα − L)−1 and P̂α(λ) = (λα − L)−1,
1
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for λ large enough. Thus, in order to obtain the existence of a mild solution
to (1.2), we just need to assume that L is the generator of an α-times
resolvent family {Sα(t)}t≥0, because in this case Pα(t) = (g1−α ∗ Sα)(t) and
the mild solution to (1.2) is given by

v(t) = Sα(t)v0 +

∫ t

0
(g1−α ∗ Sα)(t− s)g(s)ds,

where, for β > 0, gβ(t) := tβ−1

Γ(β) , t > 0 and the ∗ denotes the usual finite

convolution. The problem now is to find conditions on the operator L (and
therefore on A and E) in order to ensure that L is the generator of an
α-times resolvent family {Sα(t)}t≥0. A subordination principle ([4]) asserts
that if L generates a C0-semigroup {T (t)}t≥0, then L is the generator of the
α-times resolvent family {Sα(t)}t≥0 given by

Sα(t)x =

∫ ∞

0
Φα(r)T (rt

α)xdr, t ≥ 0, x ∈ X,

where Φα is the Wright type function ([28, Appendix F])

Φα(z) :=

∞∑
n=0

(−z)n

n!Γ(−αn+ 1− α)
=

∫
γ
µα−1eµ−zµα

dµ,

where γ is a contour which starts and ends at −∞ and encircles the origin
once counterclockwise. Therefore, by [20, Theorem 3.1] L is also a generator
of an α-resolvent family {Pα(t)}t≥0 given by

Pα(t)x = α

∫ ∞

0
tα−1rΦα(r)T (rt

α)xdr, t ≥ 0, x ∈ X.

It is a well known fact (see for instance [12]) that if D(E) ⊂ D(A), E
is bijective and E−1 : X → D(E) is a compact operator, then L = AE−1

is a bounded operator which generates the compact C0-semigroup T (t) =

eAE−1t, t ≥ 0. However, in this case we need the existence (and compactness)
of E−1 which, in general, is a restrictive assumption. In order to solve the
problem of the existence of E−1, more recently, the authors in [22] (see
also [2]) give a subordination principle and show that if the pair (A,E)
generates a Sobolev type resolvent family (also called propagation family,
see Definition 1 below) {S(t)}t≥0 then the pair (A,E) is also the generator
of the families {Q(t)}t≥0 and {R(t)}t≥0 given, respectively, by
(1.3)

Q(t) =

∫ ∞

0
ξα(r)S(t

αr)dr and R(t) = α

∫ ∞

0
tα−1rξα(r)S(t

αr)dr

where t ≥ 0 and for r ≥ 0

ξα(r) =
1

α
r−(1+ 1

α
)ϖα(r

− 1
α ),

ϖα(r) =
1

π

∞∑
n=1

(−1)n−1r−αn−1Γ(nα+ 1)

n!
sin(nπα).
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By [32] we notice that the function ξα coincides with the Wright type func-
tion Φα. Therefore, in this case, and without the assumption of the existence
of E−1, the mild solution to problem (1.1) is given by

u(t) = Q(t)u0 +

∫ t

0
R(t− s)g(s)ds.

Since the pair (A,E) in the generator of a Sobolev type resolvent family
{S(t)}t≥0, there exist ω > 0 and M > 0 such that ∥S(t)∥ ≤Meωt and

(λE −A)−1Ex =

∫ ∞

0
e−λtS(t)xdt,

for all x ∈ D(E) and λ > ω. Moreover, in this case, the abstract Sobolev
(also called degenerate) Cauchy problem

(1.4)

{
(Eu)′(t) = Au(t), t ≥ 0,
Eu(0) = u0,

has a unique mild solution given by

u(t) = S(t)u0,

see [24] for more details. Therefore, the existence of a mild solution to (1.1)
is closely related to the problem of the existence of a mild solution to (1.4).

Differential equations of Sobolev type arise in several applications, such
as in the motion of a uniform liquid in fissured rocks [11] or in the infiltration
of water in unsaturated porous media. In such applications the operator A
is typically the Laplacian operator and E is the multiplication operator by a
function m(x), see for instance [25, 29]. A detailed study of linear abstract
Sobolev (or degenerate) type differential equations (1.4) can be found in the
monographs [18] and [33].

On the other hand, fractional differential equations of Sobolev type have
been widely investigated in the last years and the results are focused mainly
on Caputo fractional differential equations of order α ∈ (0, 1].

Our aim in this paper is to study the existence of mild solutions to frac-
tional diffusion equations of Sobolev type. More concretely, in this paper
we consider the equations of Sobolev type

Dα
t (Eu)(t) = Au(t) + Ef(t), (Eu)(0) = Eu0,(1.5)

and

Dα(Eu)(t) = Au(t) + Ef(t), (g1−α ∗ Eu)(0) = Eu0,(1.6)

for 0 < α < 1; and for 1 < α < 2, the equations

Dα
t (Eu)(t) = Au(t) + Ef(t), (Eu)(0) = Eu0, (Eu)′(0) = Eu1,(1.7)

and
(1.8)
Dα(Eu)(t) = Au(t) +Ef(t), (g2−α ∗Eu)(0) = Eu0, (g2−α ∗Eu)′(0) = Eu1.
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where A and E are closed linear operators in X, Dα
t and Dα denote, respec-

tively, the Caputo and Riemann-Liouville fractional derivatives of order α,
u0 and u1 are the initial conditions and f is a suitable function.

In some previous works, to establish the existence of mild solutions to
Sobolev type differential equations some assumptions on operators A and E
are considered:

i) D(A) ⊆ D(E) and A admits a continuous inverse operator A−1

[16, 17],
ii) D(A) ⊆ D(E) and E has the bounded inverse [18],
iii) D(E) ⊆ D(A) and E has the compact inverse [9, 10].

In this paper, we study the existence of mild solutions to (1.5)–(1.8)
without assuming the existence of E−1 or it compactness as well as without
any assumption on the relation between D(A) and D(E). Our method is
based on the theory of Sobolev type resolvent families {S(t)}t≥0 generated
by the pair (A,E) (see Definition 1 below) introduced in [24] and on a new
subordination principle (see Theorem 1 below) which extends some results
in [1, 4, 5, 6, 7, 8, 21, 27].

We remark here that we study simultaneously fractional differential equa-
tions of Sobolev type for the Caputo and Riemann-Liouville fractional deriva-
tives and that, to the best of our knowledge, the initial value problems (1.7)
and (1.8) in the case 1 < α < 2 has not been addressed in the existing
literature by using a subordination method.

The paper is organized as follows. In Section 2, we present some pre-
liminaries on fractional calculus and Sobolev type resolvent families needed
in the next sections. In Section 3, assuming that the pair (A,E) is the
generator of a Sobolev type resolvent family we derive a new subordination
principle. In Section 4, we study the existence of mild solutions for problems
(1.5)–(1.8). Finally, in Section 5 we study some applications of the abstract
results in the previous sections.

2. Fractional calculus and Sobolev type resolvent families

Let X ≡ (X, ∥ · ∥) be a Banach space. The Banach space of all bounded
and linear operators from X into Y is denoted by B(X,Y ). If A is a closed
linear operator on X we denote by ρ(A) the resolvent set of A and R(λ,A) =
(λ − A)−1 the resolvent operator of A defined for all λ ∈ ρ(A). By [D(A)]
we denote the domain of A equipped with the graph norm.

The strongly continuous family {S(t)}t≥0 ⊂ B(X) is said to be exponen-
tially bounded if there exist M > 0 and w ∈ R such that ∥S(t)∥ ≤Mewt, for
all t > 0.

Definition 1. Let A,E be closed and linear operators with domain D(A)∩
D(E) ̸= {0} defined on a Banach space X. We say that the pair (A,E) is
the generator of a Sobolev type resolvent family, if there exist M > 0 and
ω ≥ 0 and a strongly continuous function S : [0,∞) → B([D(E)], X) such
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that ∥S(t)∥ ≤ Meωt for all t ≥ 0, {λ : Reλ > ω} ⊂ ρE(A) and for all
x ∈ D(E),

(λE −A)−1Ex =

∫ ∞

0
e−λtS(t)xdt, Reλ > ω,

where ρE(A) denotes the set ρE(A) := {µ ∈ C : (µE−A)−1is invertible and
(µE−A)−1E is bounded}. In this case, {S(t)}t≥0 is called the Sobolev type
resolvent family generated by the pair (A,E).

For α > 0, gα defines the function gα(t) :=
ta−1

Γ(α) , where Γ(·) is the gamma

function. We note that if α, β > 0, then the semigroup property holds:
gα+β = gα ∗gβ, where (f ∗g) denotes the usual finite convolution (f ∗g)(t) =∫ t
0 f(t− s)g(s)ds.

The Riemann-Liouville fractional integral of order α > 0 of a vector-
valued function f : [0,∞) → X is defined by

Iαf(t) := (gα ∗ f)(t) =
∫ t

0
gα(t− s)f(s)ds.

The Caputo and Riemann-Liouville fractional derivatives of order α > 0 of
f are, respectively, defined by

Dα
t f(t) := (gm−α ∗ f (m))(t) =

∫ t

0
gm−α(t− s)f (m)(s)ds,

and

Dαf(t) :=
dm

dtm

∫ t

0
gm−α(t− s)f(s)ds,

where m = ⌈α⌉ is the smallest integer greater than or equal to α. We notice
that if α = m ∈ N, then Dm

t = Dm = dm

dtm . We refer to the reader to [28, 31]
for further details, examples and applications on fractional calculus.

For a locally integrable function f : [0,∞) → X, we denote by f̂(λ) (or
L(f)(λ)) the Laplace transform of f :

f̂(λ) =

∫ ∞

0
e−λtf(t)dt,

provided the integral converges for some λ ∈ C. Applying the properties of
the Laplace transform, an easy computation shows that

(2.1)

{
D̂α

t f(λ) = λαf̂(λ)− λα−1f(0) and

D̂αf(λ) = λαf̂(λ)− (g1−α ∗ f)(0),

for 0 < α ≤ 1, and

(2.2)

{
D̂α

t f(λ) = λαf̂(λ)− λα−1f(0)− λα−2f ′(0) and

D̂αf(λ) = λαf̂(λ)− λ(g2−α ∗ f)(0)− (g2−α ∗ f)′(0),

for 1 < α ≤ 2. Here, the power λα is uniquely defined by λα := |λ|αeiarg(λ),
with −π < arg(λ) < π.
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Now, we recall two important functions in fractional calculus. For α, β > 0
and z ∈ C, the Mittag-Leffler function Eα,β and its Laplace transform L are
defined by

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
, L(tβ−1Eα,β(ρt

α))(λ) =
λα−β

λα − ρ
,

ρ ∈ C, Reλ > |ρ|1/α. For α > −1, β ∈ C and z ∈ C, the Wright function
Wα,β is defined by

Wα,β(z) :=
∞∑
k=0

zk

k!Γ(αk + β)
.

If β ≥ 0, then it is easy to prove (see [28]) that

Wα,β(z) :=
1

2πi

∫
Ha

µ−βeµ+zµ−α
dµ,

for all z ∈ C and α > −1, where Ha denotes the Hankel path defined as a
contour that begins and t = −∞− ia (a > 0), encircles the branch cut that
lies along the negative real axis, and ends up at t = −∞ + ib (b > 0), see
for instance [28].

Definition 2. [1, Definition 3.1] For 0 < α < 1 and β ≥ 0, we define the
function ψα,β in two variables by

ψα,β(t, s) := tβ−1W−α,β(−stα), t > 0, s ∈ C.

By [1, Theorem 3.2] it follows that if 0 < α < 1 and β ≥ 0, then
ψα,β(t, s) ≥ 0 for t, s > 0 and that

(2.3)

∫ ∞

0
e−λtψα,β(t, s)dt = λ−βe−λαs, for s, λ > 0.

Moreover, if 0 < α < 1, β ≥ 0 and δ > 0, then (see [1, Theorem 3.2])

(2.4)

∫ ∞

0
gδ(s)ψα,β(t, s)dt = gαδ+β(t), for t > 0,

and

(2.5)

∫ ∞

0
eλsψα,β(t, s)ds = tα+β−1Eα,α+β(λt

α), for t > 0 and λ ∈ C.

Definition 3. Let A : D(A) ⊆ X → X, E : D(E) ⊆ X → X be closed linear
operators defined on a Banach space X satisfying D(A) ∩D(E) ̸= {0}. Let
0 < β < α. We say that the pair (A,E) is the generator of an (α, β)-Sobolev
type resolvent family, if there exist ω ≥ 0 and a strongly continuous function
SE
α,β : [0,∞) → B([D(E)], X) such that SE

α,β(t) is exponentially bounded,

{λα : Reλ > ω} ⊂ ρE(A), and for all x ∈ D(E),

(2.6) λα−β (λαE −A)−1Ex =

∫ ∞

0
e−λtSE

α,β(t)xdt, Reλ > ω.
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In this case, {SE
α,β(t)}t≥0 is called the (α, β)-Sobolev type resolvent family

generated by the pair (A,E).

Lemma 4. Suppose that (A,E) generates an (α, β)-Sobolev type resolvent
family {SE

α,β(t)}t≥0. Then (gα∗SE
α,β)(t)x ∈ D(A)∩D(E) for all x ∈ D(E), t ≥

0 and

(2.7) ESE
α,β(t)x = gβ(t)Ex+A

∫ t

0
gα(t− s)SE

α,β(s)xds.

Proof. Let x ∈ D(E). For t ≥ 0 we define z(t) := (gα ∗ SE
α,β)(t)x. Since

SE
α,β(t) is exponentially bounded we obtain that z is Laplace transformable

and ẑ(λ) = 1
λα ŜE

α,β(λ)x. Now, if λ
α ∈ ρE(A) with Reλ > ω we have by (2.6)

ẑ(λ) =
1

λα
λα−β (λαE −A)−1Ex ∈ D(A) ∩D(E).

By [3, Proposition 1.7.6], z(t) ∈ D(A)∩D(E) for all t ≥ 0. Finally, by (2.6)
we obtain (2.7) by uniqueness of the Laplace transform. �

We notice that the Laplace transform of the operators Q and R defined
in (1.3) satisfy (see [22, p. 513])

Q̂(λ) = λα−1(λαE −A)−1E and R̂(λ) = (λαE −A)−1E,

for λ large enough, and therefore, Q and R are respectively, an (α, 1) and
an (α, α)-Sobolev type resolvent family.

This notion of Sobolev type resolvent family corresponds to an extension
of the concept of (gα, gβ)-regularized families introduced in [26] in the case
E = I (where I denotes the identity operator defined in X), and therefore,
an extension of the concepts of C0-semigroups, cosine families, integrated
semigroups, among others, see for instance [3]. It is a well known fact that
the C0-semigroups of linear operators are an important tool in the study of
mild solution to abstract first order differential equations in Banach spaces.
On the other hand, we observe that if α = β = 1 in Definition 3, then the
(1, 1)-Sobolev type resolvent family corresponds to notion of Sobolev type
resolvent family given in Definition 1, which are also of crucial importance
in the existence of mild solution to the degenerate Cauchy problem (1.4),
see for instance [18] and the references therein. Now, we define the concept
of mild solution to the problems (1.5)–(1.8). The concept of (α, β)-Sobolev
type resolvent family will be crucial here.

We first consider the case 0 < α < 1. Suppose that the pair (A,E) is the
generator of the (α, 1)-Sobolev type resolvent family {SE

α,1(t)}t≥0. Then, the

property of the Laplace transform for the Caputo fractional derivative (2.1)
allows to define the mild solution to problem (1.5) as

u(t) = SE
α,1(t)u0 +

∫ t

0
(g1−α ∗ SE

α,1)(t− s)f(s)ds,(2.8)
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Similarly, if now (A,E) is the generator of the Sobolev type resolvent
family {SE

α,α(t)}t≥0, then by the property (2.1), we can define the mild
solution to problem (1.6) as

u(t) = SE
α,α(t)u0 +

∫ t

0
SE
α,α(t− s)f(s)ds.(2.9)

Now, we consider the case 1 < α < 2. If (A,E) is the generator of the
Sobolev type resolvent family {SE

α,1(t)}t≥0, then by using (2.2) we define the

mild solution to (1.7) as

(2.10) u(t) = SE
α,1(t)u0 + (g1 ∗ SE

α,1)(t)u1 +

∫ t

0
(gα−1 ∗ SE

α,1)(t− s)f(s)ds,

and if (A,E) generates the Sobolev type resolvent family {SE
α,α−1(t)}t≥0,

then the property (2.2) for the Riemann-Liouville fractional derivative allows
to define the solution to (1.8) as

(2.11) u(t) = SE
α,α−1(t)u0+(g1∗SE

α,α−1)(t)u1+

∫ t

0
(g1∗SE

α,α−1)(t−s)f(s)ds.

3. Subordination principle for Sobolev type resolvent families

In order to define the mild solutions (2.8)–(2.11) we need to ensure the
existence of the families {SE

α,β(t)}t≥0 for suitable positive α and β. In this
section, we prove a subordination principle which will be of a crucial impor-
tance to prove the existence of mild solutions to problems (1.5)–(1.8).

Theorem 1 (Subordination). Let X be a Banach space. Take 0 < µ ≤ 2
and ν > 0, and assume that the pair (A,E) generates a (µ, ν)-Sobolev type
resolvent family {SE

µ,ν(t)}t≥0 defined in X, such that ∥SE
µ,ν(t)∥ ≤ Meωt for

all t ≥ 0, whereM,ω ≥ 0. Take 0 < δ < 1 and ε ≥ 0. Then, the pair (A,E) is
the generator of the (δµ, δν+ε)-Sobolev type resolvent family {SE

δµ,δν+ε(t)}t≥0

defined by

(3.1) SE
δµ,δν+ε(t)x :=

∫ ∞

0
ψδ,ε(t, s)S

E
µ,ν(s)xds, t ≥ 0, x ∈ X

where ψδ,ε is the Wright type function given in Definition 2. Moreover, if
ε > 0, then

(3.2) SE
δµ,δν+ε(t)x = (gε ∗ SE

δµ,δν)(t)x,

for all x ∈ X and t > 0.

Proof. The proof follows similarly to [1, Theorem 4.5]. We give here the
details for the sake of completeness. We need to prove that the family
{SE

δµ,δν+ε(t)}t≥0 defined by (3.1) defines a (δµ, δν+ε)-Sobolev type resolvent

family. Since ∥SE
µ,ν(t)∥ ≤ Meωt we obtain that SE

δµ,δν+ε(t) is exponentially
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bounded. In fact, since 0 < δ < 1 and ε ≥ 0 we obtain ψδ,ε(t, s) ≥ 0 and if
x ∈ X, by (3.1) and (2.5) we have

∥SE
δµ,δν+ε(t)x∥ ≤

∫ ∞

0
ψδ,ε(t, s)∥SE

µ,ν(s)x∥ds

≤M

∫ ∞

0
ψδ,ε(t, s)e

ωs∥x∥ds =Mtδ+ε−1Eδ,δ+ε(ωt
δ).

By [4, Formula (1.27)], there exists a constant C > 0 such that Eα,β(λt
α) ≤

Cλ
1−β
α t1−βeλ

1
α t, for all 0 < α < 2, β > 0, λ ≥ 0 and t ≥ 0, which implies

the existence of a constant K > 0 such that

∥SE
δµ,δν+ε(t)x∥ ≤Mtδ+ε−1Eδ,δ+ε(ωt

δ) ≤ Keω
1
δ t.

This shows that {SE
δµ,δν+ε(t)}t≥0 is exponentially bounded. In order to prove

that {SE
δµ,δν+ε(t)}t≥0 is strongly continuous, we first notice that SE

δµ,δν+ε(t)

is strongly continuous for all t > 0 by its definition given in (3.1) and the
strong continuity of {SE

µ,ν(t)}t≥0. Now, to prove the strong continuity at the
origin we notice that for all x ∈ X we have by (2.4)

∥SE
δµ,δν+ε(t)x− gδν+ε(t)x∥

gδν+ε(t)
≤ 1

gδν+ε(t)

∫ ∞

0
ψδ,ε(t, s)∥SE

µ,ν(s)x− gν(s)x∥ds

= Γ(δν + ε)

∫ ∞

0
tδ−δνW−δ,ε(−r)∥SE

µ,ν(rt
δ)x− gν(rt

δ)x∥dr

= Γ(δν + ε)

∫ ∞

0

gν(r)W−δ,ε(−r)
gν(rtδ)

∥SE
µ,ν(rt

δ)x− gν(rt
δ)x∥dr.

Since {SE
µ,ν(t)}t≥0 is a (µ, ν)-Sobolev type resolvent family, we obtain, by

the dominated convergence theorem, that

∥SE
δµ,δν+ε(t)x− gδν+ε(t)x∥

gδν+ε(t)
→ 0, as t→ 0+.

On the other hand, since {SE
µ,ν(t)}t≥0 is a (µ, ν)-Sobolev type resolvent

family we have by (2.3) and Fubini’s theorem that∫ ∞

0
e−λtSE

δµ,δν+ε(t)xdt =

∫ ∞

0
e−λt

(∫ ∞

0
ψδ,ε(t, s)S

E
µ,ν(s)xds

)
dt

=

∫ ∞

0

(∫ ∞

0
e−λtψδ,ε(t, s)dt

)
SE
µ,ν(s)xds

=

∫ ∞

0
λ−εe−λδsSE

µ,ν(s)xds

= λδµ−(δν+ε)(λδµE −A)−1Ex,

for all λ > ω1/δ such that λδµ ∈ ρE(A). The identity (3.2) follows directly
from the properties of the Laplace transform. This concludes the proof of
the theorem. �
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Corollary 2. Let X be a Banach space. Assume that the pair (A,E) gener-
ates a Sobolev type resolvent family {SE(t)}t≥0 defined in X. If 0 < α < 1,
then the pair (A,E) is the generator of the (α, 1)-Sobolev type resolvent fam-
ily {SE

α,1(t)}t≥0 defined by

(3.3) SE
α,1(t)x :=

∫ ∞

0
ψα,1−α(t, s)S

E(s)xds, t ≥ 0, x ∈ X,

where ψα,1−α is the Wright type function given by

ψα,1−α(t, s) =
1

π

∫ ∞

0
ρα−1e−sρα cosα(π−θ)−tρ cos θ

× sin (tρ sin θ − sρα sinα(π − θ) + α(π − θ)) dρ,(3.4)

for θ ∈ (π − π
2α , π/2).

Proof. If µ = ν = 1 and ε = 1−α in the subordination Theorem 1 we obtain
(3.3). On the other hand, by the identity (2.3) we have∫ ∞

0
e−λtψα,1−α(t, s)dt = λα−1e−λαs, λ, s > 0,

and by [21, Corollary 3.3 (b)], formula (3.4) holds as a consequence of the
uniqueness of the Laplace transform. �
Corollary 3. Let X be a Banach space. Assume that the pair (A,E) gener-
ates a Sobolev type resolvent family {SE(t)}t≥0 defined in X. If 0 < α < 1,
then the pair (A,E) is the generator of the (α, α)-Sobolev type resolvent
family {SE

α,α(t)}t≥0 defined by

(3.5) SE
α,α(t)x :=

∫ ∞

0
ψα,0(t, s)S

E(s)xds, t ≥ 0, x ∈ X,

where ψα,0 is the Wright type function given by

(3.6) ψα,0(t, s) =
1

π

∫ ∞

0
etρ cos θ−sρα cosαθ · sin(tρ sin θ − sρ sinαθ + θ)dρ,

for π/2 < θ < π.

Proof. By the subordination Theorem 1 we obtain (3.5) as a consequence of
(3.1), with µ = ν = 1 and ε = 0. The identity (2.3) implies that∫ ∞

0
e−λtψα,0(t, s)dt = e−λαs, λ, s > 0,

and by [21, Formula (3.8) in Corollary 3.3], we obtain (3.6) as a consequence
of the uniqueness of the Laplace transform. �
Corollary 4. Let X be a Banach space. Assume that the pair (A,E) gen-
erates a (2, 1)-Sobolev type resolvent family {SE

2,1(t)}t≥0 defined in X. If

1 < α < 2, then the pair (A,E) is the generator of the (α, 1)-Sobolev type
resolvent family {SE

α,1(t)}t≥0 defined by

(3.7) SE
α,1(t)x :=

∫ ∞

0
ψα

2
,1−α

2
(t, s)SE

2,1(s)xds, t ≥ 0, x ∈ X,
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where ψα
2
,1−α

2
is the Wright type function given by

ψα
2
,1−α

2
(t, s) =

1

π

∫ ∞

0
ρ

α
2
−1e−sρ

α
2 cos α

2
(π−θ)−tρ cos θ

× sin
(
tρ sin θ − sρ

α
2 sin α

2 (π − θ) + α
2 (π − θ)

)
dρ,(3.8)

for θ ∈ (π − 2
α , π/2).

Proof. We take µ = 2, ν = 1, δ = α
2 and ε = 1 − α

2 in Theorem 1 to obtain
the formula (3.7). On the other hand, by (2.3) we have∫ ∞

0
e−λtψα

2
,1−α

2
(t, s)dt = λ

α
2
−1e−λ

α
2 s, λ, s > 0,

and by [21, Corollary 3.3 (b)], we obtain (3.8). �
Corollary 5. Let X be a Banach space. Assume that the pair (A,E) gen-
erates a (2, 1)-Sobolev type resolvent family {SE

2,1(t)}t≥0 defined in X. If

1 < α < 2, then the pair (A,E) is the generator of the (α, α)-Sobolev type
resolvent family {SE

α,α(t)}t≥0 defined by

(3.9) SE
α,α(t)x :=

∫ ∞

0
ψα

2
,α
2
(t, s)SE

2,1(s)xds, t ≥ 0, x ∈ X,

where ψα
2
,α
2
is the Wright type function given by

(3.10) ψα
2
,α
2
(t, s) = (gα

2
∗ ψα

2
,0(·, s))(t),

where ψα
2
,0(·, s) is given in (3.6).

Proof. If we take µ = 2, ν = 1, δ = α
2 and ε = α

2 in Theorem 1, then we
obtain the formula (3.9). On the other hand, by (2.3) we can write∫ ∞

0
e−λtψα

2
,α
2
(t, s)dt = λ−

α
2 e−λ

α
2 s =

1

λ
α
2

e−λ
α
2 s, λ, s > 0.

Since ĝα
2
(λ) = 1

λ
α
2

for λ > 0, we obtain (3.10) as a consequence of the

uniqueness of the Laplace transform and (3.6). �

4. Existence of mild solutions to fractional diffusion
equations

of Sobolev type

In this section we study the existence of mild solution to problems (1.5)–
(1.8) for the Caputo and Riemann-Liouville fractional derivatives of order
0 < α < 1 and 1 < α < 2.We remark here that, to the best of our knowledge,
the case 1 < α < 2 seems to be new in the existing literature.

We first discuss the case 0 < α < 1. We recall that a Sobolev type
resolvent family corresponds to a (1, 1)-Sobolev type resolvent family.

Theorem 1. Let X be a Banach space. Assume that the pair (A,E) gen-
erates a Sobolev type resolvent family {SE(t)}t≥0 defined in X. If 0 < α < 1
and f is Laplace transformable, then the problem (1.5) for the Caputo frac-
tional derivative has a unique mild solution given by
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u(t) = SE
α,1(t)u0 +

∫ t

0
(g1−α ∗ SE

α,1)(t− s)f(s)ds,

where {SE
α,1(t)}t≥0 is given in (3.3).

Proof. Since the pair (A,E) is the generator of the Sobolev type resolvent
family {SE(t)}t≥0, Corollary 2 implies that the pair (A,E) is the generator
of the (α, 1)-Sobolev type resolvent family {Sα,1(t)}t≥0 given by (3.3) and
the solution is obtained as a consequence of the uniqueness of the Laplace
transform. �

Assume that (A,E) generates a Sobolev type resolvent family {SE(t)}t≥0.
If E is the identity operator in the Banach space X, then A generates a
C0-semigroup, and therefore, the next result is an extension of [1, Theorem
5.1].

Theorem 2. Let X be a Banach space. Assume that the pair (A,E) gener-
ates a Sobolev type resolvent family {SE(t)}t≥0 defined in X. If 0 < α < 1
and f is Laplace transformable, then the problem (1.6) for the Riemann-
Liouville fractional derivative has a unique mild solution given by

u(t) = SE
α,α(t)u0 +

∫ t

0
SE
α,α(t− s)f(s)ds,

where {SE
α,α(t)}t≥0 is given in (3.5).

Proof. It follows similarly to the proof of Theorem 1. �

Now we consider the case 1 < α < 2. If (A,E) generates a (2, 1)-Sobolev
type resolvent family {SE(t)}t≥0 and E is the identity operator in the Ba-
nach space X, then {SI(t)}t≥0 corresponds to a cosine family generated by
A (see [3]). We have the following results.

Theorem 3. Let X be a Banach space. Assume that the pair (A,E) gen-
erates a (2, 1)-Sobolev type resolvent family {SE

2,1(t)}t≥0 defined in X. If

1 < α < 2 and f is Laplace transformable, then the problem (1.7) for the
Caputo fractional derivative has a unique mild solution given by

u(t) = SE
α,1(t)u0 + (g1 ∗ SE

α,1)(t)u1 +

∫ t

0
(gα−1 ∗ SE

α,1)(t− s)f(s)ds,

where {SE
α,1(t)}t≥0 is given in (3.7).

Proof. Corollary 4 implies that the pair (A,E) generates the (α, 1)-Sobolev
type resolvent family {Sα,1(t)}t≥0 given by (3.7). The result holds by the
uniqueness of the Laplace transform. �
Theorem 4. Let X be a Banach space. Assume that the pair (A,E) gen-
erates a (2, 1)-Sobolev type resolvent family {SE

2,1(t)}t≥0 defined in X. If
1 < α < 2 and f is Laplace transformable, then the problem

(4.1)

 Dα(Eu)(t) = Au(t) + Ef(t), t ≥ 0,
(g2−α ∗ Eu)(0) = 0,
(g2−α ∗ Eu)′(0) = Eu1
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for the Riemann-Liouville fractional derivative has a unique mild solution
given by

(4.2) u(t) = SE
α,α(t)u1 +

∫ t

0
SE
α,α(t− s)f(s)ds.

where {SE
α,α(t)}t≥0 is given in (3.9).

Proof. Since (g2−α ∗ Eu)(0) = 0 the mild solution given in (2.11) reads

u(t) = (g1 ∗ SE
α,α−1)(t)u1 +

∫ t

0
(g1 ∗ SE

α,α−1)(t− s)f(s)ds,

which, by the uniqueness of the Laplace transform, can be written as (4.2).
Since (A,E) generates a (2, 1)-Sobolev type resolvent family, the Corollary 5
asserts that that the pair (A,E) generates the (α, α)-Sobolev type resolvent
family {Sα,α(t)}t≥0 given by (3.9) and the result holds by the uniqueness of
the Laplace transform. �

We remark that the problem (4.1) with the first initial condition equal to
zero has been widely studied in the last years, see for instance [23, 30] and
the references therein. If (g2−α ∗Eu)(0) ̸= 0 in (4.1), then the mild solution
to (1.8) is given by

u(t) = SE
α,α−1(t)u0 + (g1 ∗ SE

α,α−1)(t)u1 +

∫ t

0
(g1 ∗ SE

α,α−1)(t− s)f(s)ds.

However, the Subordination Theorem 1 can not be used to obtain the
Sobolev type resolvent family {SE

α,α−1(t)}t≥0 by assuming that the pair

(A,E) generates a (2, 1) or a (2, 2)-Sobolev type resolvent family. If fact, if
µ = 2, ν = 1 and δ = α

2 in Theorem 1, then δν+ε = α−1 is equivalent to say
that ε = α

2 − 1 < 0. Therefore, (A,E) can not be the generator of a (2, 1)-
Sobolev type resolvent family in order to ensure that (A,E) is the generator
of an (α, α − 1)-Sobolev type resolvent family. Similarly, if µ = 2, ν = 2
and δ = α

2 in Theorem 1, we obtain ε = −1 < 0, which is impossible and
we conclude that (A,E) can not be the generator of a (2, 2)-Sobolev type
resolvent family which is also the generator of an (α, α − 1)-Sobolev type
resolvent family.

5. Applications

Let 0 < α < 1. We consider the following fractional differential equations
of Sobolev type

(5.1)
Dα

t

 ∑
|p|≤2m

bpD
p
xu

 (t, x) =
∑

|p|≤2m

apD
p
xu(t, x) +

∑
|p|≤2m

bpD
p
xf(t, x),∑

|p|≤2m

bpD
p
xu(0, x) =

∑
|p|≤2m

bpD
p
xu0(x),
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where t ≥ 0, x ∈ Rn, the function u0 is a fixed complex valued function
defined in Rn, p denotes the n-dimensional multi-index p = (p1, ..., pn) ∈
Nn
0 := N0 × ...× N0, |p| = p1 + ...+ pn and

Dp
x = Dp1

x1
...Dpn

xn
=

(
∂

∂x1

)p1

...

(
∂

∂xn

)pn

,

and moreover, m is a fixed positive integer, ap ∈ C for each multi-index
p ∈ Nn

0 with |p| ≤ m, and bp ∈ C for each p ∈ Nn
0 , with |p| ≤ m.

Given a f ∈ S(Rn), the Schwartz’s space of all rapidly decreasing func-
tions on Rn, the Fourier transform and its inverse transform are denoted,
respectively, by

(Ff)(ξ) :=
∫
Rn

e−i⟨η,ξ⟩f(η)dη and (F−1f)(η) :=
1

(2π)n

∫
Rn

ei⟨η,ξ⟩f(ξ)dξ.

Now, let X = L2(Rn) be the Hilbert space of all square integrable func-
tions define on Rn and define the operators A and E by

Au :=
∑

|p|≤2m

apD
p
xu, with domian D(A) :=

u ∈ X :
∑

|p|≤2m

apD
p
xu ∈ X


and

Eu :=
∑

|p|≤2m

bpD
p
xu, with domianD(E) :=

u ∈ X :
∑

|p|≤2m

bpD
p
xu ∈ X


Clearly, A and E are closed linear operators. For ξ ∈ Rn, the symbol of A
and E will be denoted respectively by

a(ξ) :=
∑

|p|≤2m

i|p|apξ
p, and b(ξ) :=

∑
|p|≤2m

i|p|bpξ
p.

In these conditions, the problem (5.1) for the Caputo fractional derivative
can be written in the abstract form (1.5). Similarly, if we consider the
problem for the Riemann-Liouville fractional derivative
(5.2)

Dα

 ∑
|p|≤2m

bpD
p
xu

 (t, x) =
∑

|p|≤2m

apD
p
xu(t, x) +

∑
|p|≤2m

bpD
p
xf(t, x),∑

|p|≤2m

(g1−α ∗ bpDp
xu) (0, x) =

∑
|p|≤2m

bpD
p
xu0(x),

where t ≥ 0, then it can be written in the abstract form (1.6) with the same
operators A and E. Now, we recall the following result in [24].

Theorem 1. [24, Theorem 2.2] Let X = L2(Rn). Assume that b(ξ) ̸= 0 for
each ξ ∈ Rn and ω := supξ∈Rn Re

(
a(ξ)b−1(ξ)

)
≤ 0. Then, the pair (A,E) is
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the generator of a Sobolev type resolvent family {SE(t)}t≥0, and there exists
a positive constant C such that

∥SE(t)∥ ≤ Ceωt, t ≥ 0.

Since (A,E) generates a Sobolev type resolvent family {SE(t)}t≥0, Corol-
laries 2 and 3 imply the following results for 0 < α < 1.

Proposition 2. Let X = L2(Rn) and 0 < α < 1. Assume that b(ξ) ̸= 0 for
each ξ ∈ Rn and ω := supξ∈Rn Re

(
a(ξ)b−1(ξ)

)
≤ 0. Then, the pair (A,E) is

the generator of the (α, 1)-Sobolev type resolvent family {SE
α,1(t)}t≥0 given

by (3.3).

Proposition 3. Let X = L2(Rn) and 0 < α < 1. Assume that b(ξ) ̸= 0 for
each ξ ∈ Rn and ω := supξ∈Rn Re

(
a(ξ)b−1(ξ)

)
≤ 0. Then, the pair (A,E) is

the generator of the (α, α)-Sobolev type resolvent family {SE
α,α(t)}t≥0 given

by (3.5).

As a consequence of Propositions 2 and 3 we have the following results
for the existence of mild solutions in the case 0 < α < 1. Here A and E are
defined as before.

Theorem 4. Let 0 < α < 1. If f(t) ∈ D(E), then the problem (5.1) for the
Caputo fractional derivative has a unique mild solution given by

u(t) = SE
α,1(t)u0 +

∫ t

0
(g1−α ∗ SE

α,1)(t− s)f(s)ds,

where {SE
α,1(t)}t≥0 is given in Proposition 2.

Proof. By Theorem 1, (A,E) is the generator of a Sobolev type resolvent
family {SE(t)}t≥0, and by Proposition 2 (A,E) is also the generator of the
(α, 1)-Sobolev type resolvent family {SE

α,1(t)}t≥0 given by (3.3) and then,
the result holds by Theorem 1. �
Theorem 5. Let 0 < α < 1. If f(t) ∈ D(E), then the problem (5.2) for the
Riemann-Liouville fractional derivative has a unique mild solution given by

u(t) = SE
α,α(t)u0 +

∫ t

0
SE
α,α(t− s)f(s)ds,

where {SE
α,α(t)}t≥0 is given in Proposition 3.

Proof. The proof follows similarly to the Proof of Theorem 4, by using
Proposition 3 and Theorem 2. �

Now, we study the existence of mild solutions in case 1 < α < 2. First, we
need to study the existence of mild solutions to the second order problem.
Let A : D(A) ⊆ X → X, E : D(E) ⊆ X → X be closed linear operators
defined in a Banach space X satisfying D(A)∩D(E) ̸= {0}. Given u0, u1 ∈
D(E) consider the second order problem of Sobolev type

(5.3)

 (Eu)′′(t) = Au(t), t ≥ 0,
(Eu)(0) = Eu0,
(Eu)′(0) = Eu1
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A classical solution to (5.3) is a twice differentiable function u : R+ → X
such that u(t) ∈ D(A)∩D(E) for each t ≥ 0 and (5.3) holds for all t ≥ 0. A
mild solution to (5.3) is a function u : R+ → X such that u(t) ∈ D(E) and
(g2 ∗ u)(t) ∈ D(A) for all t ≥ 0, and

(5.4) Eu(t) = Eu0 + tEu1 +A(g2 ∗ u)(t), t ≥ 0.

We notice that if u is a classical solution, then integrating (5.3) twice,
we obtain that u is a mild solution. Moreover, if u is a twice differentiable
function which is a mild solution to (5.3), then u is a classical solution.

Lemma 6. Let A : D(A) ⊆ X → X, E : D(E) ⊆ X → X be closed linear
operators defined on a Banach space X satisfying D(A) ∩D(E) ̸= {0}. Let
u a continuous such that ∥u(t)∥ ≤Meωt for all t ≥ 0, where ω > 0. Then u
is a mild solution to (5.3) if and only if for all λ > ω we have

(5.5) û(λ) ∈ D(A) ∩D(E) and λEu0 + Eu1 = (λ2E −A)û(λ).

Proof. The proof follows the same lines that [3, Proposition 3.14.1]. Let u
be a mild solution to (5.3). Since u is Laplace transformable and A and
E are closed operators, by [3, Proposition 1.7.6] we have û(λ) ∈ D(E) and

moreover û(λ)
λ2 = ̂(g2 ∗ u)(λ) ∈ D(A) by [3, Proposition 1.7.6], which implies

that û(λ) ∈ D(A) for all λ > ω. The equation in (5.5) follows taking Laplace
transform in (5.4). Conversely, assume that (5.5) holds. By [3, Proposition
1.7.6] u(t) ∈ D(E) for all t ≥ 0. Define v(t) := (g1 ∗ u)(t). Then v is Laplace
transformable and∫ ∞

0
e−λt(g1 ∗ v)(t)dt =

û(λ)

λ2
= ̂(g2 ∗ u)(λ) ∈ D(A).

The same Proposition 1.7.6 in [3] implies that (g2∗u)(t) = (g1∗v)(t) ∈ D(A)
for all t ≥ 0. The equation in (5.5) implies (5.4) by the uniqueness of the
Laplace transform. �

Now, if u : R+ → X is continuous, then Lemma 6 shows that u is a mild
solution to (5.3) if and only if û(λ) = λ(λ2E −A)−1Eu0 + (λ2E −A)−1Eu1
for all λ > ω. Assume that the pair (A,E) generates a (2, 1)-Sobolev type

resolvent family {SE
2,1(t)}t≥0. Since D

2
t = D2 = d2

dt2
we have that the second

order problem of Sobolev type (5.3) has a unique mild solution (according
to definition given in (2.10)) given by

u(t) = SE
2,1(t)u0 + (g1 ∗ SE

2,1)(t)u1.(5.6)

Since ŜE
2,1(λ) = λ(λ2E −A)−1E, then both definition of mild solution (5.4)

and (5.6) to (5.3) are equivalent. Moreover, we have the following result.

Proposition 7. Let A : D(A) ⊆ X → X be a closed linear operator and
E : D(E) ⊆ X → X be a bounded linear operator defined in a Banach
space X satisfying D(A)∩D(E) ̸= {0}. If for all initial value x ∈ D(E) the
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problem

(5.7)

 (Eu)′′(t) = Au(t), t ≥ 0,
(Eu)(0) = Ex,
(Eu)′(0) = 0

has a unique mild solution u with ∥u(t)∥ ≤Meωt, where M,ω > 0, then the
pair (A,E) is the generator of a (2, 1)-Sobolev type resolvent family.

Proof. The proof follows similarly to [3, Theorem 3.1.12] and [34, Theorem
6.9]. Let C(R+, X) be the space of all continuous functions v : R+ → X. Let
ux(t) := u(t, x) be the unique mild solution to (5.7). From the uniqueness,
it follows that u is linear in x. Therefore, we can define for each t ≥ 0 the
linear operators SE

2,1(t) : X → X by SE
2,1(t)x := ux(t), x ∈ X. We claim that

SE
2,1(t) is a bounded operator. In fact, the mapping φ : X → C(R+, X) given

by φ(x) = ux is linear. Moreover, if xn → x in X and uxn → u in C(R+, X),
then (g2∗uxn)(t) → (g2∗u)(t) for all t > 0. By (5.4) we have A(g2∗uxn)(t) =
Euxn(t)−Exn, n ∈ N. Since A is closed and E is bounded, it follows that
(g2 ∗u)(t) ∈ D(A) and A(g2 ∗u)(t) = limn→∞Euxn(t)−Exn = Eu(t)−Ex,
which means that u is a mild solution to (5.7) with the initial value x and
therefore φ(x) = u. We conclude that φ has a closed graph, and by the
closed graph theorem φ is continuous, which implies that SE

2,1(t) is strongly
continuous.

On the other hand, since ∥ux(t)∥ ≤ Meωt, we obtain ∥SE
2,1(t)x∥ ≤ Meωt,

which shows that SE
2,1(t) is exponentially bounded. Finally, by Lemma 6 it

follows that (λ2E − A)ûx(λ) = λEx for all λ > ω. Hence, if λ2 ∈ ρE(A),

then ŜE
2,1(λ)x = ûx(λ) = (λ2E −A)−1Ex. This proves the proposition. �

Now, we take 1 < α < 2. Let Ω be a bounded open subset on Rn with a
smooth boundary ∂Ω. Let T > 0, D = (0, T )× Ω and Σ = (0, T )× ∂Ω. We
consider

(5.8)

 Dα
t (m(x)u(t, x)) = ∆u(t, x) +m(x)f(t, x), t ≥ 0,

m(x)u(0, x) = m(x)u0(x),
(m(x)u)′(0, x) = m(x)v0(x),

and

(5.9)

 Dα
t (m(x)u(t, x)) = ∆u(t, x) +m(x)f(t, x), t ≥ 0,

(g2−α ∗m(x)u)(0, x) = 0,
(g2−α ∗m(x)u)′(0, x) = m(x)v0(x),

where m is a positive and continuous function on Ω, u0, v0 is a complex
valued function defined in Ω.

Let E be the multiplication operator by m. If we take X = L2(Ω) and
A = ∆ with domain D(A) = H2(Ω) ∩H1

0 (Ω) then by [18, Section 6.2], the
problem
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(5.10)


∂2

∂t2
(m(x)u(t, x)) = ∆u(t, x) +m(x)f(t, x), t ≥ 0,
m(x)u(0, x) = m(x)u0(x),

(m(x)u)′(0, x) = 0,

has a unique strict (and therefore mild) solution. We conclude by Proposi-
tion 7 that the pair (A,E) generates a (2, 1)-Sobolev type resolvent family
{SE

2,1(t)}t≥0. As a consequence of Corollaries 4 and 5 we have the following
propositions.

Proposition 8. Let 1 < α < 2. Let E be the multiplication operator by
m, X = L2(Ω) and A = ∆ with domain D(A) = H2(Ω) ∩ H1

0 (Ω). Then,
the pair (A,E) is the generator of the (α, 1)-Sobolev type resolvent family
{SE

α,1(t)}t≥0 given by

(5.11) SE
α,1(t)x :=

∫ ∞

0
ψα

2
,1−α

2
(t, s)SE

2,1(s)xds, t ≥ 0, x ∈ X,

where ψα
2
,1−α

2
is the Wright type function given in (3.8), and where the

Sobolev type resolvent family {SE
2,1(t)}t≥0 is given in Proposition 7.

Similarly, we have:

Proposition 9. Let 1 < α < 2. Let E be the multiplication operator by
m, X = L2(Ω) and A = ∆ with domain D(A) = H2(Ω) ∩ H1

0 (Ω). Then,
the pair (A,E) is the generator of the (α, α)-Sobolev type resolvent family
{SE

α,α(t)}t≥0 given by

(5.12) SE
α,α(t)x :=

∫ ∞

0
ψα

2
,α
2
(t, s)SE

2,1(s)xds, t ≥ 0, x ∈ X,

where ψα
2
,α
2

is the Wright type function given in (3.10), and where the

Sobolev type resolvent family {SE
2,1(t)}t≥0 is given in Proposition 7.

Finally, we have the following results for the existence of mild solutions
in the case 1 < α < 2.

Theorem 10. If 1 < α < 2, then the problem (5.8) for the Caputo fractional
derivative has a unique mild solution given by

u(t) = SE
α,1(t)u0 + (g1 ∗ SE

α,1)(t)u1 +

∫ t

0
(gα−1 ∗ SE

α,1)(t− s)f(s)ds,

where {SE
α,1(t)}t≥0 is given in Proposition 8.

Proof. By Proposition 8, the pair (A,E) is the generator of the (α, 1)-
Sobolev type resolvent family {SE

α,1(t)}t≥0 given by (5.11) and then, the
result holds by Theorem 3. �

The proof of the next result follows from Theorem 4 and similarly to the
proof of Theorem 10.
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Theorem 11. If 1 < α < 2, then the problem (5.9) for the Riemann-
Liouville fractional derivative has a unique mild solution given by

u(t) = SE
α,α(t)u1 +

∫ t

0
SE
α,α(t− s)f(s)ds,

where {SE
α,α(t)}t≥0 is given in Proposition 9.
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