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ABSTRACT. In this paper we study subordination principles for frac-
tional differential equations of Sobolev type in Banach space. With the
help of the theory of Sobolev type resolvent families (known also as
propagation family) as well as these subordination principles, we obtain
the existence of mild solutions for this kind of equations. We study si-
multaneously the case 0 < @ < 1 and 1 < a < 2 for the Caputo and
Riemann-Liouville fractional derivatives.
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1. INTRODUCTION

The problem of the existence of mild solutions to fractional differential
equations of Sobolev type in the form of

(L.1) Dy (Eu)(t) = Au(t) + Ef(t), (Eu)(0) = Eug,

has been extensively studied by several authors in the last years, see for
instance [13, 14, 15, 19, 22] and the references therein. Here, A and E are
closed linear operators defined in a Banach space (X, | - ||), uo belongs to
D(FE), the domain of E, f is a suitable function satisfying f(¢) € D(E) and
Dy* denotes the Df* for 0 < o < 1.

The change of variable v(t) = Ewu(t) allows to write the initial value
problem (1.1) as
(1.2) DEu(t) = Lo(t) + g(t),  0(0) = vo,

where L = AE~!, with D(L) = E(D(A)), g(t) = Ef(t) and vy = Euy.
Then, the mild solution to problem (1.2) is given by ([20])

v(t) = Sa(t)vo —i—/o P,(t — s)g(s)ds,

where {Sq(t)}+>0 and {P,(t)}+>0 are, respectively, the a-times and the a-
resolvent family generated by L, whose Laplace transforms satisfy

SN =X"TA*— L)Y and  P,(\) =\ —-L)7,
1
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for A large enough. Thus, in order to obtain the existence of a mild solution
to (1.2), we just need to assume that L is the generator of an «-times
resolvent family {S,(t)}+>0, because in this case P, (t) = (g1-a * Sa)(t) and
the mild solution to (1.2) is given by

t
v(t) = Sa(t)vo + /0 (g1—a * Sa)(t — s)g(s)ds,

where, for g > 0, gg(t) := %, t > 0 and the x denotes the usual finite
convolution. The problem now is to find conditions on the operator L (and
therefore on A and F) in order to ensure that L is the generator of an
a-times resolvent family {S,(t)}+>0. A subordination principle ([4]) asserts
that if L generates a Co-semigroup {7'(¢)}+>0, then L is the generator of the
a-times resolvent family {S,()}+>0 given by

Sa(t)x = / O (r)T(rt*)xdr, t>0,z€ X,
0

where @, is the Wright type function ([28, Appendix F])

- (=2)" / —1_p—zp®
D, () = = [ peten—an gy,
(2) T;) n!l'(—an+1—«) . pooe a

where  is a contour which starts and ends at —oco and encircles the origin
once counterclockwise. Therefore, by [20, Theorem 3.1] L is also a generator
of an a-resolvent family {P,(t)}+>0 given by

P,(t)x = a/ t* L ® o, (1T (rt)zdr, t>0,z € X.
0

It is a well known fact (see for instance [12]) that if D(E) C D(A), E
is bijective and E~! : X — D(E) is a compact operator, then L = AE™!
is a bounded operator which generates the compact Cp-semigroup T'(t) =
el _lt, t > 0. However, in this case we need the existence (and compactness)
of E~1 which, in general, is a restrictive assumption. In order to solve the
problem of the existence of E~!, more recently, the authors in [22] (see
also [2]) give a subordination principle and show that if the pair (A, E)
generates a Sobolev type resolvent family (also called propagation family,
see Definition 1 below) {S(¢)}+>0 then the pair (A, E) is also the generator
of the families {Q(t) }+>0 and {R(t)}+>0 given, respectively, by

(13)
= r)S(t“r)dr an =« a=lpe, (1) S(t%r)dr
Q) = /0 £a(r)S(tr)dr  and  R(1) /0 1V (1) S (197)d

where ¢t > 0 and for r > 0

1 .1 _1
Ea(r) = ar (H;)wa(r ),

1 — r 1
wa(r) = ﬂ_Z(l)n_lr_cm_l(ni'_‘_ )sin(nﬂ'a).
n=1 ’
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By [32] we notice that the function &, coincides with the Wright type func-
tion ®,. Therefore, in this case, and without the assumption of the existence
of E~', the mild solution to problem (1.1) is given by

u(t) = Q(t)up + /0 R(t — s)g(s)ds.

Since the pair (A4, F) in the generator of a Sobolev type resolvent family
{S(t)}+>0, there exist w > 0 and M > 0 such that ||S(¢)|| < Me*! and

(AE —A) Bz = / e~ MS(t)xd,
0
for all z € D(FE) and A > w. Moreover, in this case, the abstract Sobolev
(also called degenerate) Cauchy problem

(Bu)'(t) = Au(t), t>0,
(1.4) { Eu(0) = wuo,

has a unique mild solution given by
u(t) = S(t)uo,

see [24] for more details. Therefore, the existence of a mild solution to (1.1)
is closely related to the problem of the existence of a mild solution to (1.4).

Differential equations of Sobolev type arise in several applications, such
as in the motion of a uniform liquid in fissured rocks [11] or in the infiltration
of water in unsaturated porous media. In such applications the operator A
is typically the Laplacian operator and E is the multiplication operator by a
function m(zx), see for instance [25, 29]. A detailed study of linear abstract
Sobolev (or degenerate) type differential equations (1.4) can be found in the
monographs [18] and [33].

On the other hand, fractional differential equations of Sobolev type have
been widely investigated in the last years and the results are focused mainly
on Caputo fractional differential equations of order « € (0, 1].

Our aim in this paper is to study the existence of mild solutions to frac-
tional diffusion equations of Sobolev type. More concretely, in this paper
we consider the equations of Sobolev type

(L5)  D(Bu)(t) = Au(t) + Ef(t), (Eu)(0) = Bug,
and
(L6)  D(Bu)(t) = Aut) + Ef(Y), (g1-a * Bu)(0) = Eup,

for 0 < @ < 1; and for 1 < a < 2, the equations

(1.D{(Eu)(t) = Au(t) + Ef(t), (Eu)(0) = Eug, (Eu)'(0)= Eus,
and
(1.8)
D*(Eu)(t) = Au(t) + Ef(t), (go—a * Eu)(0) = Eug, (92—a * Eu)'(0) = Euy.
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where A and E are closed linear operators in X, Dy and D denote, respec-
tively, the Caputo and Riemann-Liouville fractional derivatives of order «,
ug and wup are the initial conditions and f is a suitable function.

In some previous works, to establish the existence of mild solutions to
Sobolev type differential equations some assumptions on operators A and F
are considered:

i) D(A) C D(E) and A admits a continuous inverse operator A1
116, 17,
ii) D(A) € D(E) and E has the bounded inverse [18],
iii) D(E) C D(A) and E has the compact inverse [9, 10].

In this paper, we study the existence of mild solutions to (1.5)—(1.8)
without assuming the existence of E~1 or it compactness as well as without
any assumption on the relation between D(A) and D(E). Our method is
based on the theory of Sobolev type resolvent families {S(¢)}+>0 generated
by the pair (A, E) (see Definition 1 below) introduced in [24] and on a new
subordination principle (see Theorem 1 below) which extends some results
in [1, 4, 5, 6, 7, 8, 21, 27].

We remark here that we study simultaneously fractional differential equa-
tions of Sobolev type for the Caputo and Riemann-Liouville fractional deriva-
tives and that, to the best of our knowledge, the initial value problems (1.7)
and (1.8) in the case 1 < o < 2 has not been addressed in the existing
literature by using a subordination method.

The paper is organized as follows. In Section 2, we present some pre-
liminaries on fractional calculus and Sobolev type resolvent families needed
in the next sections. In Section 3, assuming that the pair (A, F) is the
generator of a Sobolev type resolvent family we derive a new subordination
principle. In Section 4, we study the existence of mild solutions for problems
(1.5)—(1.8). Finally, in Section 5 we study some applications of the abstract
results in the previous sections.

2. FRACTIONAL CALCULUS AND SOBOLEV TYPE RESOLVENT FAMILIES

Let X = (X, ] - ||) be a Banach space. The Banach space of all bounded
and linear operators from X into Y is denoted by B(X,Y). If A is a closed
linear operator on X we denote by p(A) the resolvent set of A and R(\, A) =
(A — A)~! the resolvent operator of A defined for all A € p(A). By [D(A)]
we denote the domain of A equipped with the graph norm.

The strongly continuous family {S(¢)}:>0 C B(X) is said to be exponen-
tially bounded if there exist M > 0 and w € R such that ||S(¢)|| < Me**, for
all ¢ > 0.

Definition 1. Let A, E be closed and linear operators with domain D(A) N
D(FE) # {0} defined on a Banach space X. We say that the pair (A, E) is
the generator of a Sobolev type resolvent family, if there exist M > 0 and
w > 0 and a strongly continuous function S : [0,00) — B([D(E)], X) such
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that |S(t)]| < Me“t for all t > 0, {\ : ReA > w} C pg(A) and for all
x € D(E), .
(AE —A)'EBx = / e MS(t)xdt, Re) > w,
0
where pp(A) denotes the set pp(A) := {u € C: (uE—A)"Lis invertible and
(WE — A)7YE is bounded}. In this case, {S(t)}+>0 is called the Sobolev type
resolvent family generated by the pair (A, E).

For o > 0, g4 defines the function g, (t) := {f(—;l), where I'(+) is the gamma
function. We note that if a, 8 > 0, then the semigroup property holds:
Ja+8 = Ja*gs, where (f xg) denotes the usual finite convolution (f*g)(t) =

fg f(t—s)g(s)ds.
The Riemann-Liouville fractional integral of order o > 0 of a vector-
valued function f : [0,00) — X is defined by

I9F(t) == (ga % £)(t) = /0 dolt — 5)f(s)ds.

The Caputo and Riemann-Liouville fractional derivatives of order v > 0 of
f are, respectively, defined by
t

DEF(t) = (gra * FT) (1) = /0 Gm—alt — 5) ) (s)ds,

and
m t

Df(t) == drm 0 Im—a(t — 5)f(s)ds,

where m = [«] is the smallest integer greater than or equal to oe. We notice

that if « = m € N, then D" = D™ = jt—rzl. We refer to the reader to [28, 31]

for further details, examples and applications on fractional calculus.

For a locally integrable function f : [0,00) — X, we denote by f (M) (or
L(f)(N\)) the Laplace transform of f :

F = / TN f (b,

0

provided the integral converges for some A € C. Applying the properties of
the Laplace transform, an easy computation shows that

(2.1) { @()‘) - )‘afj()‘) —X271f(0) and
Daf(A) = AYf(A) = (91-a * f)(0),
for 0 < a <1, and
(2.2) { DFF(A) = AF(A) = A°TF(0) = AT2f(0)  and
Def(A) = Xf(A) — Mg2—a * [)(0) — (92-a * f),([))7

for 1 < a < 2. Here, the power A* is uniquely defined by A := |\|*e &),
with —7 < arg(\) < 7.
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Now, we recall two important functions in fractional calculus. For o, 8 > 0
and z € C, the Mittag-Leffler function E, g and its Laplace transform £ are
defined by

Fap(z) =3 — 2 L B p(pto)) () =
a,B(Z) = kzol_‘(ak‘f‘ﬁ)’ ( a,ﬁ(p ))( ) G p’

p € C,ReX > [p|"/® For o > —1,8 € C and z € C, the Wright function
W g is defined by

o0
Was(2) = 2 Hib(ab 5 5) kT ( ak: +8)
k=0
If 8 >0, then it is easy to prove (see [28]) that
1 —a
W, = “Bertzn g
o B( ) 2771 Ha,u € W,
for all z € C and a > —1, where Ha denotes the Hankel path defined as a
contour that begins and ¢t = —oco —ia (a > 0), encircles the branch cut that
lies along the negative real axis, and ends up at t = —oo + ib (b > 0), see

for instance [28].

Definition 2. [1, Definition 3.1] For 0 < a < 1 and f > 0, we define the
function 1, g in two variables by

Vap(t,s) = tPTW_, 5(—st*), t>0, s€C.

By [1, Theorem 3.2] it follows that if 0 < o < 1 and § > 0, then
ap(t,s) >0 for t,s > 0 and that

(2.3) / e Mo p(t,s)dt = XPe ™5 for s, A > 0.
0
Moreover, if 0 < a < 1, 8 >0 and 6 > 0, then (see [1, Theorem 3.2])
(2.4) / 95(8)Ya,p(t, s)dt = gas1s(t), for t >0,
0
and

(2.5) / M p(t, s)ds = t*PLE, o g (M), for t > 0 and X € C.
0

Definition 3. Let A: D(A) C X — X, E: D(E) C X — X be closed linear
operators defined on a Banach space X satisfying D(A) N D(E) # {0}. Let
0 < B < a. We say that the pair (A, E) is the generator of an (a, 3)-Sobolev
type resolvent family, if there exist w > 0 and a strongly continuous function
5’55 : [0,00) = B([D(E)],X) such that Sfﬁ(t) is exponentially bounded,
{A*: Re\ > w} C pr(A4), and for all x € D(E),

(2.6) AN PNE - A Er = /0 e MSE (t)wdt, Re > w.
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In this case, {Sig(t)}tzo is called the (o, B)-Sobolev type resolvent family
generated by the pair (A, E).

Lemma 4. Suppose that (A, E) generates an («, 3)-Sobolev type resolvent
](;amigj {Sf,g(t)}tzo- Then (ga*Sgﬁ)(t)x € D(AND(E) forallz € D(E),t >
an

(2.7) ESE, (t)x = gp(t)Ex + A/o Jalt — 8>S£B(S)xd8.

Proof. Let x € D(FE). For t > 0 we define z(t) := (ga * Sfiﬂ)(t):r. Since
SE 5 (t) is exponentially bounded we obtain that z is Laplace transformable

and 2(A) = 15 5P, (V). Now, if A* € pp(A) with Red > w we have by (2.6)

1
(N = raxv*ﬁ (A\E — A)' Ex € D(A)ND(E).
By [3, Proposition 1.7.6], z(t) € D(A) N D(E) for all ¢ > 0. Finally, by (2.6)
we obtain (2.7) by uniqueness of the Laplace transform. O

We notice that the Laplace transform of the operators Q and R defined
in (1.3) satisfy (see [22, p. 513])

Q) =X"1AE—-A)'E and R(\) = (\“E—-A)'E,

for X\ large enough, and therefore, Q and R are respectively, an (a, 1) and
an («, a)-Sobolev type resolvent family.

This notion of Sobolev type resolvent family corresponds to an extension
of the concept of (ga, gg)-regularized families introduced in [26] in the case
E =TI (where I denotes the identity operator defined in X), and therefore,
an extension of the concepts of Cy-semigroups, cosine families, integrated
semigroups, among others, see for instance [3]. It is a well known fact that
the Cy-semigroups of linear operators are an important tool in the study of
mild solution to abstract first order differential equations in Banach spaces.
On the other hand, we observe that if « = 8 = 1 in Definition 3, then the
(1,1)-Sobolev type resolvent family corresponds to notion of Sobolev type
resolvent family given in Definition 1, which are also of crucial importance
in the existence of mild solution to the degenerate Cauchy problem (1.4),
see for instance [18] and the references therein. Now, we define the concept
of mild solution to the problems (1.5)—(1.8). The concept of (¢, 3)-Sobolev
type resolvent family will be crucial here.

We first consider the case 0 < a < 1. Suppose that the pair (A, E) is the
generator of the (v, 1)-Sobolev type resolvent family {SZ;(t)}i>0. Then, the
property of the Laplace transform for the Caputo fractional derivative (2.1)
allows to define the mild solution to problem (1.5) as

28 ) = SE(Duo+ /Ot<gl_a*sf,l><t—s>f<s>ds,
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Similarly, if now (A, E) is the generator of the Sobolev type resolvent
family {SZF,(t)}i>0, then by the property (2.1), we can define the mild
solution to problem (1.6) as

(2.9) u(t) = Sﬁa(t)uo + /t Sﬁa(t — 3)f(s)ds.
0

Now, we consider the case 1 < a < 2. If (A, E) is the generator of the
Sobolev type resolvent family {Sf 1(t) }t>0, then by using (2.2) we define the
mild solution to (1.7) as

(2.10) u(t) = S5y (t)uo + (g1 * S1)()ur + /0 (ga—1* Saa)(t = 5)f(s)ds,

and if (A4, E) generates the Sobolev type resolvent family {SZ . (¢)}i>o0,

a,a—1
then the property (2.2) for the Riemann-Liouville fractional derivative allows
to define the solution to (1.8) as

(2.11) w(t) = Sﬁa—l(t)uo_‘_(gl*Sga—l)(t)u1+/o (91%88 0—1)(t=35)f(s)ds.

3. SUBORDINATION PRINCIPLE FOR SOBOLEV TYPE RESOLVENT FAMILIES

In order to define the mild solutions (2.8)—(2.11) we need to ensure the
existence of the families {Sf 5(t) }i>0 for suitable positive o and 8. In this
section, we prove a subordination principle which will be of a crucial impor-
tance to prove the existence of mild solutions to problems (1.5)—(1.8).

Theorem 1 (Subordination). Let X be a Banach space. Take 0 < p < 2
and v > 0, and assume that the pair (A, E) generates a (u,v)-Sobolev type
resolvent family {Slfl,(t)}tzo defined in X, such that HSEV(t)H < Me“t for
allt > 0, where M,w > 0. Take 0 < § < 1 ande > 0. Then, the pair (A, E) is
the generator of the (6, ov+e)-Sobolev type resolvent family {S(;E%&V_FE (t) }+>0
defined by

(3.1) Sﬁb’éy%(t)x = /0 pse(t, s)SEV(s)xds, t>0,zeX

where Vs is the Wright type function given in Definition 2. Moreover, if
e >0, then

(32) S£,§V+a(t)$ = (gE * Sg;,ﬁy)(t)xa
forallxz € X and t > 0.
Proof. The proof follows similarly to [1, Theorem 4.5]. We give here the

details for the sake of completeness. We need to prove that the family
{55,5u+5(t)}t20 defined by (3.1) defines a (6, dv+¢)-Sobolev type resolvent

family. Since ||SZ,(t)|| < Me“" we obtain that Sﬁ,&%(ﬂ is exponentially
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bounded. In fact, since 0 < < 1 and € > 0 we obtain ¢s5.(t,s) > 0 and if
x € X, by (3.1) and (2.5) we have

[ee]
1SE, 5o (D] < / o (t,9)|1SE, (s)z] ds
o0
<M / e (t, )€ [l ds = M7+ By 5y (wt?).
0

By [4, Formula (1.27)], there exists a constant C' > 0 such that E, g(At*) <
_ 1

C)\%tlfﬁe””, foral 0 < a < 2,8 >0, A>0and t > 0, which implies

the existence of a constant K > 0 such that

1
“5575V+5<t)mu < Mt(s—‘ra_lEé,éJrs(wtg) < Kewét-

This shows that {S 5, su+e(t) }1>0 is exponentially bounded. In order to prove
that {Sﬁ’éyﬁ(t)}tzo is strongly continuous, we first notice that Sﬁ’(;y_s_e(t)
is strongly continuous for all ¢ > 0 by its definition given in (3.1) and the
strong continuity of {Sf ,(t) }+>0. Now, to prove the strong continuity at the

origin we notice that for all x € X we have by (2.4)
||S§E;L,5y+g(t)$ — Govre(t)z]| 1
Gov+e(t) " Govte

=T(ov+ 8)/ t‘s_(s”W,g,g(—T)HSEV(rt‘S)m — gl,(rt‘s)der

0
X g (rYW_se(—r
v [l

Since {Siy(t)}tzo is a (u,v)-Sobolev type resolvent family, we obtain, by
the dominated convergence theorem, that

||S£J,,5l/+€ (t).’L' — Yov+te (t)ﬂf”
g&u-l—e(t)

On the other hand, since {Siy(t)}tzo is a (p,v)-Sobolev type resolvent
family we have by (2.3) and Fubini’s theorem that

/ e_’\tS(gM;Vﬁ(t):L‘dt = /0 e M (/0 1!)575(25,8)S£V(8)1'd8> dt

0
= / (/OO e_Atqbg,g(t,s)dt) Sf’l,(s)xds
0 0

= /0 Afse*)‘ésslfy(s)xds
Aon=Ov ) (N1 — A)~ B,

for all A > w'/? such that A% € pp(A). The identity (3.2) follows directly
from the properties of the Laplace transform. This concludes the proof of
the theorem. O

~ E
(t) /O wé,a(t, s)||SM7V(5)x _ gI/(S)fL’HdS

HSﬁV(rt‘s)x — g, (rt)||dr.

—0, as t—0".
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Corollary 2. Let X be a Banach space. Assume that the pair (A, E) gener-
ates a Sobolev type resolvent family {ST(t)}i>0 defined in X. If 0 < a < 1,
then the pair (A, E) is the generator of the («, 1)-Sobolev type resolvent fam-

ity {S51(t)}i>0 defined by
(33)  SEy ()= / Poralt,s)SE(s)xds, >0, z€ X,
0

where Yo,1—q 5 the Wright type function given by

o0

wcx,l—a(ty 8) _ j{_/ pa—le—sp"‘ cos a(m—0)—tpcosf
0

(3.4) X sin (tpsinf — sp®sina(m — 0) + a(r — 0)) dp,
for 0 € (m— 5-,7/2).

Proof. If y =v =1 and € = 1 —« in the subordination Theorem 1 we obtain
(3.3). On the other hand, by the identity (2.3) we have

o
/ e_)‘twml_a(t, s)dt = X\ "Le ™ A s> 0,

0
and by [21, Corollary 3.3 (b)], formula (3.4) holds as a consequence of the
uniqueness of the Laplace transform. O

Corollary 3. Let X be a Banach space. Assume that the pair (A, E) gener-
ates a Sobolev type resolvent family {S* () }1>0 defined in X. If 0 < a < 1,
then the pair (A, E) is the generator of the («,a)-Sobolev type resolvent

family {SE, (1)} =0 defined by

(3.5) Sﬁa(t)x = / Yaolt,s)SE(s)xds, t>0, z € X,
0

where Y0 is the Wright type function given by

1 [ o

(3.6) Yaolt,s)= / etpeost=spcosall gin(tpsinh — spsinab + 0)dp,
T Jo

form/2 <0 <.

Proof. By the subordination Theorem 1 we obtain (3.5) as a consequence of
(3.1), with 4 = v =1 and € = 0. The identity (2.3) implies that
oo

ef)\twavo(u S)dt = e*)\&s’ )\’ s> 07

and by [21, Formula (3.8) in Corollary 3.3], we obtain (3.6) as a consequence
of the uniqueness of the Laplace transform. O

Corollary 4. Let X be a Banach space. Assume that the pair (A, E) gen-
erates a (2,1)-Sobolev type resolvent family {Sfl(t)}tzo defined in X. If
1 < a < 2, then the pair (A, E) is the generator of the («,1)-Sobolev type
resolvent family {Sgl(t)}tzo defined by

37 SE\(D)e ;:/0 Y1 a(t,5)SE (s)ads, >0,z € X,
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where @ZJ%J,% 1s the Wright type function given by
L [% a1 —sp? 0)—tpcosf
¢%,1—%(t7 8) _ ﬂ./o PE sp2 cos g (m—0)—tpcos

(3.8) X sin <tp sinf — sp? sin S —0)+ (7 — 0)) dp,
for0 e (r— 2, 7/2).
Proof. We take p =2,v=1,0 = § and ¢ = 1 — § in Theorem 1 to obtain
the formula (3.7). On the other hand, by (2.3) we have
/OO e Mipa 1 _a(t,s)dt = ASTle sy g5,
and by [21, Co(l)rollary 3.3 (b)], we obtain (3.8). O

Corollary 5. Let X be a Banach space. Assume that the pair (A, E) gen-
erates a (2,1)-Sobolev type resolvent family {Sfl(t)}tzo defined in X. If
1 < a < 2, then the pair (A, E) is the generator of the (a, a)-Sobolev type
resolvent family {SE ,(t)}i>o defined by

(3.9) x—/ 1/1%%755521( s)xds, t>0,z¢€ X,
where zﬁ%’% is the Wright type function given by
(3.10) Ya a(t,s) = (g2 *¥ao(,9))(t),

where ¢%,0('>5) is given in (3.6).

Proof. If we take p = 2,v = 1,0 = § and € = § in Theorem 1, then we

obtain the formula (3.9). On the other hand, by (2. ) we can write

o 1
/ e Mipa a(t, s)dt = ASe s e s 55
0

2
Since ga(A) = )\—% for A > 0, we obtain (3.10) as a consequence of the

uniqueness of the Laplace transform and (3.6). O

4. EXISTENCE OF MILD SOLUTIONS TO FRACTIONAL DIFFUSION
EQUATIONS
OF SOBOLEV TYPE

In this section we study the existence of mild solution to problems (1.5)—
(1.8) for the Caputo and Riemann-Liouville fractional derivatives of order
0<a<landl < a < 2. Weremark here that, to the best of our knowledge,
the case 1 < o < 2 seems to be new in the existing literature.

We first discuss the case 0 < a < 1. We recall that a Sobolev type
resolvent family corresponds to a (1,1)-Sobolev type resolvent family.

Theorem 1. Let X be a Banach space. Assume that the pair (A, E) gen-
erates a Sobolev type resolvent family {S¥(t)}i>0 defined in X. If 0 < a < 1
and f is Laplace transformable, then the problem (1.5) for the Caputo frac-
tional derivative has a unique mild solution given by
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t
) = SE w0+ [ (oo SE(E= ) f(5)ds,
where {S’il(t)}tzo is giwen in (3.3).

Proof. Since the pair (A, E) is the generator of the Sobolev type resolvent
family {S(¢)}i>0, Corollary 2 implies that the pair (A, E) is the generator
of the (o, 1)-Sobolev type resolvent family {Sq.1(f)}+>0 given by (3.3) and
the solution is obtained as a consequence of the uniqueness of the Laplace
transform. O

Assume that (A, E) generates a Sobolev type resolvent family {S(#)} 0.

If F is the identity operator in the Banach space X, then A generates a
Co-semigroup, and therefore, the next result is an extension of [1, Theorem
5.1].
Theorem 2. Let X be a Banach space. Assume that the pair (A, E) gener-
ates a Sobolev type resolvent family {S¥(t)}+>0 defined in X. If 0<a <1
and f is Laplace transformable, then the problem (1.6) for the Riemann-
Liouville fractional derivative has a untz'que mild solution given by

u(t) = Sga(t)uo +/ Sga(t —s)f(s)ds,
0
where {SF . (t)}i>0 is given in (3.5).
Proof. It follows similarly to the proof of Theorem 1. O

Now we consider the case 1 < a < 2. If (A4, E) generates a (2, 1)-Sobolev

type resolvent family {S¥(¢)};>0 and E is the identity operator in the Ba-
nach space X, then {S?(t)};>0 corresponds to a cosine family generated by
A (see [3]). We have the following results.
Theorem 3. Let X be a Banach space. Assume that the pair (A, E) gen-
erates a (2,1)-Sobolev type resolvent family {Sfl(t)}tzo defined in X. If
1 < a <2 and f is Laplace transformable, then the problem (1.7) for the
Caputo fractional derivative has a unique mild solution given by

t
u(t) = SZy (B)uo + (g1 % SE1)(E)us + /0 (g * SE1)(t — ) f(s)ds,
where {Sgl(t)}tzo is given in (3.7).

Proof. Corollary 4 implies that the pair (A, E) generates the («, 1)-Sobolev
type resolvent family {Sq,1(t)}+>0 given by (3.7). The result holds by the
uniqueness of the Laplace transform. O

Theorem 4. Let X be a Banach space. Assume that the pair (A, E) gen-
erates a (2,1)-Sobolev type resolvent family {Sfl(t)}tzo defined in X. If
1 < a <2 and f is Laplace transformable, then the problem

De(Bu)(t) = Au(t)+ Ef(t),t >0,

(4.1) (92—a x Eu)(0) = 0,
(92—a * Eu)'(0) = Ew
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for the Riemann-Liouville fractional derivative has a unique mild solution
given by

t
(4.2) u(t) = Sf’a(t)ul —I—/ Sf’a(t — s)f(s)ds.
0
where {SE () }i>0 is given in (3.9).
Proof. Since (g2—q * Eu)(0) = 0 the mild solution given in (2.11) reads
t
u(t) = (g * 2o )(Our + [ (g % SEo )0 - 9)f(5)ds,
0

which, by the uniqueness of the Laplace transform, can be written as (4.2).
Since (A, E') generates a (2, 1)-Sobolev type resolvent family, the Corollary 5
asserts that that the pair (A, E') generates the (o, a)-Sobolev type resolvent
family {Sq,a(t)}+>0 given by (3.9) and the result holds by the uniqueness of
the Laplace transform. O

We remark that the problem (4.1) with the first initial condition equal to
zero has been widely studied in the last years, see for instance [23, 30] and
the references therein. If (ga—q * Eu)(0) # 0 in (4.1), then the mild solution
to (1.8) is given by

ut) = Saa1(t)uo + (91 % Sae1)(Hur + /0 (91 % Saa—1)(t = 5).f(s)ds.

However, the Subordination Theorem 1 can not be used to obtain the
Sobolev type resolvent family {Sf a_1(t)}t>0 by assuming that the pair
(A, E) generates a (2,1) or a (2,2)-Sobolev type resolvent family. If fact, if
p=2,v=1and = § in Theorem 1, then v +& = a—1 is equivalent to say
that e = § — 1 < 0. Therefore, (A, E') can not be the generator of a (2, 1)-
Sobolev type resolvent family in order to ensure that (A, F) is the generator
of an (e, — 1)-Sobolev type resolvent family. Similarly, if 4 = 2,v = 2
and 0 = § in Theorem 1, we obtain ¢ = —1 < 0, which is impossible and
we conclude that (A, E) can not be the generator of a (2,2)-Sobolev type
resolvent family which is also the generator of an (a,a — 1)-Sobolev type

resolvent family.

5. APPLICATIONS

Let 0 < a < 1. We consider the following fractional differential equations
of Sobolev type

(5.1)

DE| > bDbu| (tx) = > aDbu(tz)+ Y byDPf(tx),

Ip|<2m Ip|<2m [p|<2m

Y bpDRu(0,2) = Y bDiug(x),

|p|<2m Ip|<2m
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where t > 0, x € R", the function ug is a fixed complex valued function
defined in R™, p denotes the n-dimensional multi-index p = (p1,...,pn) €
N§ :=Ng x ... x No, |p| =p1 + ... + pp and

6 p1 8 Pn
DP = DPL  DPr = [ — i | —
£ LT e <8m1> (6:%) ’

and moreover, m is a fixed positive integer, a, € C for each multi-index
p € Nj with |p| < m, and b, € C for each p € N}, with |p| < m.

Given a f € S(R™), the Schwartz’s space of all rapidly decreasing func-
tions on R™, the Fourier transform and its inverse transform are denoted,
respectively, by

A= [ 9y and (F)0) = s [ 09 p(€)a

n

Now, let X = L?(R™) be the Hilbert space of all square integrable func-
tions define on R™ and define the operators A and E by

Au = Z apDPu, with domian D(A):=que X : Z apDPu € X

Ip|<2m |p|<2m

and

Bu:= Y b,Dbu, with domian D(E) :={u€ X: » bDluecX
Ip|<2m Ip|<2m

Clearly, A and E are closed linear operators. For £ € R™, the symbol of A
and E will be denoted respectively by

a(@) = > iPlaye?, and b)) = Y il

Ip|<2m Ip|<2m

In these conditions, the problem (5.1) for the Caputo fractional derivative
can be written in the abstract form (1.5). Similarly, if we consider the
problem for the Riemann-Liouville fractional derivative

(5.2)
D~ Z byDPu | (t,z) = Z apDPu(t, ) + Z b, DY f(t, ),
[p|<2m Ip|<2m Ip|<2m
Y (gaxbpDPu)(0,2) = > bDlug(a),
Ip|<2m Ip|<2m

where ¢ > 0, then it can be written in the abstract form (1.6) with the same
operators A and E. Now, we recall the following result in [24].

Theorem 1. [24, Theorem 2.2] Let X = L?(R"). Assume that b(¢) # 0 for
each § € R™ and w := supgcpn Re (a(§)b™1(€)) < 0. Then, the pair (A, E) is
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the generator of a Sobolev type resolvent family { ST (t)}i>0, and there exists
a positive constant C' such that

ISE(t)]| < Ce*t, t>o.

Since (A, E) generates a Sobolev type resolvent family {S¥(¢)}>0, Corol-
laries 2 and 3 imply the following results for 0 < o < 1.
Proposition 2. Let X = L}(R") and 0 < a < 1. Assume that b(§) # 0 for
each § € R" and w := supgcgn Re (a(§)b™1(€)) < 0. Then, the pair (A, E) is
the generator of the (a,1)-Sobolev type resolvent family {SE,(t)}i>0 given
by (3.3). ’
Proposition 3. Let X = L}(R") and 0 < a < 1. Assume that b(§) # 0 for
each & € R" and w := supgcgn Re (a(§)b~1(€)) < 0. Then, the pair (A, E) is
the generator of the (o, a)-Sobolev type resolvent family {Sf’a(t)}tzo given
by (3.5).

As a consequence of Propositions 2 and 3 we have the following results
for the existence of mild solutions in the case 0 < o« < 1. Here A and E are
defined as before.

Theorem 4. Let 0 < o < 1. If f(t) € D(FE), then the problem (5.1) for the
Caputo fractional derivative has a unique mild solution given by

ult) = SEx(thuo + | (g1 STt — 5)f(s)ds,

where {Sgl(t)}tzo is given in Proposition 2.

Proof. By Theorem 1, (A, E) is the generator of a Sobolev type resolvent
family {S()}/>0, and by Proposition 2 (A, E) is also the generator of the
(v, 1)-Sobolev type resolvent family {Sgl(t)}tzo given by (3.3) and then,
the result holds by Theorem 1. O

Theorem 5. Let 0 < o < 1. If f(t) € D(E), then the problem (5.2) for the
Riemann-Liouville fractional derivative has a unique mild solution given by

t
u(t) = SEothuo + [ SEa(t = )7,
0
where {Sga(t)}tzo is given in Proposition 3.

Proof. The proof follows similarly to the Proof of Theorem 4, by using
Proposition 3 and Theorem 2. O

Now, we study the existence of mild solutions in case 1 < a < 2. First, we
need to study the existence of mild solutions to the second order problem.
Let A: D(A) C X — X, E: D(E) C X — X be closed linear operators
defined in a Banach space X satisfying D(A) N D(E) # {0}. Given ug, u; €
D(E) consider the second order problem of Sobolev type

(Ew)"(t) = Au(t), t>0,
(5:3) (Bu)(0) = Eu,
(Eu)'(0) = Euw
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A classical solution to (5.3) is a twice differentiable function v : Ry — X
such that u(t) € D(A)ND(FE) for each t > 0 and (5.3) holds for all ¢ > 0. A
mild solution to (5.3) is a function v : Ry — X such that u(t) € D(F) and
(g2 xu)(t) € D(A) for all t > 0, and

(5.4) Bu(t) = Bug + tEuy + A(go +u)(t), > 0.

We notice that if u is a classical solution, then integrating (5.3) twice,
we obtain that u is a mild solution. Moreover, if u is a twice differentiable
function which is a mild solution to (5.3), then u is a classical solution.

Lemma 6. Let A: D(A) C X — X, E: D(F) C X — X be closed linear
operators defined on a Banach space X satisfying D(A) N D(E) # {0}. Let
u a continuous such that ||u(t)|| < Me“t for all t > 0, where w > 0. Then u
is a mild solution to (5.3) if and only if for all A > w we have

(5.5) @\ € D(A)ND(E) and MEug+ Euy = (\2E — A)a()N).

Proof. The proof follows the same lines that [3, Proposition 3.14.1]. Let u
be a mild solution to (5.3). Since u is Laplace transformable and A and
E are closed operators, by [3, Proposition 1.7.6] we have 4(\) € D(E) and
moreover % = (g2 *u)(\) € D(A) by [3, Proposition 1.7.6], which implies
that a4(\) € D(A) for all A > w. The equation in (5.5) follows taking Laplace
transform in (5.4). Conversely, assume that (5.5) holds. By [3, Proposition
1.7.6] u(t) € D(E) for all t > 0. Define v(t) := (g1 *u)(¢). Then v is Laplace
transformable and
| e oo = 15 = Gy e pa)
0

The same Proposition 1.7.6 in [3] implies that (g2*u)(t) = (g1%v)(t) € D(A)
for all ¢ > 0. The equation in (5.5) implies (5.4) by the uniqueness of the
Laplace transform. O

Now, if u : Ry — X is continuous, then Lemma 6 shows that v is a mild
solution to (5.3) if and only if @(\) = A(A\2E — A) "' Eug + (A\2E — A) "1 Buy
for all A > w. Assume that the pair (A, E) generates a (2, 1)-Sobolev type

resolvent family {SQE:I (t)}>0. Since D7 = D? = % we have that the second
order problem of Sobolev type (5.3) has a unique mild solution (according

to definition given in (2.10)) given by

(5.6) u(t) = Sfl(t)uo + (g1 * Sfl)(t)ul.

Since S (A) = A(A*E — A)~'E, then both definition of mild solution (5.4)
and (5.6) to (5.3) are equivalent. Moreover, we have the following result.
Proposition 7. Let A : D(A) C X — X be a closed linear operator and

E : D(E) € X — X be a bounded linear operator defined in a Banach
space X satisfying D(A) N D(E) # {0}. If for all initial value x € D(E) the
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problem

(Buw)'(t) = Au(t), t>0,
(5.7) (Eu)(0) = Eu,
(Eu)'(0) = 0

has a unique mild solution u with ||u(t)|] < Me“t, where M,w > 0, then the
pair (A, E) is the generator of a (2,1)-Sobolev type resolvent family.

Proof. The proof follows similarly to [3, Theorem 3.1.12] and [34, Theorem
6.9]. Let C(R4, X) be the space of all continuous functions v : Ry — X. Let
Uz (t) := u(t,x) be the unique mild solution to (5.7). From the uniqueness,
it follows that u is linear in x. Therefore, we can define for each ¢ > 0 the
linear operators SQEJ (t): X - X by S’fl (t)x = uy(t), x € X. We claim that
Sfl (t) is a bounded operator. In fact, the mapping ¢ : X — C(R4, X) given
by ¢(x) = ug is linear. Moreover, if z, — z in X and u,, — vin C(R4, X),
then (ga*ug, )(t) — (g2xu)(t) for all t > 0. By (5.4) we have A(g2*uz, )(t) =
FEu,, (t)— Ex,, mn € N.Since A is closed and E is bounded, it follows that
(g2*u)(t) € D(A) and A(g2*u)(t) = limy—00 Eug, (t) — Ex,, = Eu(t) — Ex,
which means that u is a mild solution to (5.7) with the initial value = and
therefore ¢(x) = u. We conclude that ¢ has a closed graph, and by the
closed graph theorem ¢ is continuous, which implies that SQle (t) is strongly
continuous.

On the other hand, since |Ju,(t)|| < Me“!, we obtain HSQEJ (t)x| < Me*t,
which shows that SQE71 (t) is exponentially bounded. Finally, by Lemma 6 it
follows that (A2E — A)iiz(\) = AEz for all A > w. Hence, if \?> € pg(A),

then 53, (A\)z = iz (\) = (\*E — A)~' Ex. This proves the proposition. [J

Now, we take 1 < a < 2. Let 2 be a bounded open subset on R"™ with a
smooth boundary 9Q. Let T'> 0, D = (0,7) x Q and ¥ = (0,7 x 02. We
consider

DY (m(z)u(t,z)) = Au(t,x)+m(x)f(t,z), t>0,
(5.8) m(x)u(0,z) = m(z)up(x),
(m(z)u)'(0,z) = m(z)vo(x),
and
Dy (m(z)u(t,x)) = Au(t,z)+m(x)f(t,x), t>0,
(5.9) (g2—a *m(x)u)(0,2) = 0,
(92-a * m(z)u)'(0,z) = m(z)vo(x),

where m is a positive and continuous function on €, ug, vy is a complex
valued function defined in €.

Let E be the multiplication operator by m. If we take X = L?(Q) and
A = A with domain D(A) = H%(Q) N H(Q) then by [18, Section 6.2], the
problem
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g (m(@)u(t,z)) = Au(t,z) +-m(x)f(t,z), t >0,
(5.10) m(z)u(0,z) = m(z)up(z),
(m(z)u)(0.7) = 0,
has a unique strict (and therefore mild) solution. We conclude by Proposi-
tion 7 that the pair (A, F) generates a (2, 1)-Sobolev type resolvent family
{Sf1 (t) }+>0. As a consequence of Corollaries 4 and 5 we have the following
propositions.

Proposition 8. Let 1 < a < 2. Let E be the multiplication operator by
m, X = L*(Q) and A = A with domain D(A) = H?*(Q) N H}(Q). Then,
the pair (A, E) is the generator of the (a,1)-Sobolev type resolvent family
{Sgl(t)}tzo given by

(5.11) SEl t)z —/ Yo 1ol 3)52 1(8)xds, t>0,z€ X,

where zﬁ%,l,% is the Wright type function given in (3.8), and where the
Sobolev type resolvent family {SQEJ (t)}t>0 is given in Proposition 7.
Similarly, we have:

Proposition 9. Let 1 < a < 2. Let E be the multiplication operator by
m, X = L*(Q) and A = A with domain D(A) = H?*(Q) N H}(Q). Then,
the pair (A, E) is the generator of the («, «)-Sobolev type resolvent family
{Sga(t)}tzo given by

(5.12) x—/ 1/)%%t8521( s)xds, t>0, x € X,
where 1/1%7% is the Wright type function given in (3.10), and where the
Sobolev type resolvent family {S%?1 (t)}e>0 is given in Proposition 7.

Finally, we have the following results for the existence of mild solutions
in the case 1 < a < 2.

Theorem 10. If1 < a < 2, then the problem (5.8) for the Caputo fractional
derivative has a unique mild solution given by

u(t) = S, (Byuo + (g1 % SZ1)(E)us + /0 (g1 * SE,)(t — 5) f(s)ds,

where {Sgl(t)}tzo is given in Proposition 8.

Proof. By Proposition 8, the pair (A, E) is the generator of the («,1)-
Sobolev type resolvent family {Sﬁl(t)}tzo given by (5.11) and then, the
result holds by Theorem 3. U

The proof of the next result follows from Theorem 4 and similarly to the
proof of Theorem 10.
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Theorem 11. If 1 < «a < 2, then the problem (5.9) for the Riemann-
Liouville fractional derivative has a unique mild solution given by

u(t) = Sfia(t)ul + /t Sfia(t —s)f(s)ds,
0

where {SE ,(t)}i>0 is given in Proposition 9.

ACKNOWLEDGEMENTS

The author thanks to the anonymous referees for their carefully reading
of the manuscript and for making suggestions which have improved the
previous version of this paper.

REFERENCES

[1] L. Abadias, P. J. Miana, A subordination principle on Wright functions
and regularized resolvent families. J. of Function Spaces 2015 (2015)
Article ID 158145, 9 pages.

[2] R. Agarwal, D. Baleanu, J. J. Nieto, D. Torres, Y. Zhou, A survey
on fuzzy fractional differential and optimal control nonlocal evolution
equations. J. Comput. Appl. Math. 339 (2018), 3—29.

[3] W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace
Transforms and Cauchy Problems. Monogr. Math., Vol. 96, Birkh&user,
Basel (2011).

[4] E. Bazhlekova, Fractional Evolution Equations in Banach Spaces. Ph.D.
Thesis, Eindhoven University of Technology (2001).

[5] E. Bazhlekova, Subordination in a class of generalized time-
fractional diffusion-wave equations. Fract. Calc. Appl. Anal.
21, No 4 (2018), 869-900; DOI:  10.1515/fca-2018-0048;
https://www.degruyter.com/view /j/fca.2018.21.issue-4/fca-2018-
0048/fca-2018-0048.xml.

[6] E. Bazhlekova, Subordination principle for space-time fractional evolu-
tion equations and some applications. Integral Transforms Spec. Funct.
30, No 6 (2019), 431-452.

[7] E. Bazhlekova, I. Bazhlekov, Subordination approach to multi-term
time-fractional diffusion-wave equations. J. Comput. Appl. Math. 339
(2018), 179-192.

[8] E. Bazhlekova, I. Bazhlekov, Subordination approach to space-time frac-
tional diffusion. Mathematics 7 (2019), Art. 415.

[9] K. Balachandran, E. Anandhi, J. Dauer, Boundary controllability of
Sobolev-type abstract nonlinear integrodifferential systems. J. Math.
Anal. Appl. 277 (2003), 446-464.

[10] K. Balachandran, S. Kiruthika, J. Trujillo, On fractional impulsive
equations of Sobolev type with nonlocal condition in Banach spaces.
Comput. Math. Appl. 62 (2011), 1157-1165.



20 R. PONCE

[11] G. Barenblat, J. Zheltor, I. Kochiva, Basic concepts in the theory of
seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech.
24 (1960), 1286-1303.

[12] A. Benchaabane, R. Sakthivel, Sobolev-type fractional stochastic differ-
ential equations with nonLipschitz coefficients. J. Comput. Appl. Math.
312 (2017), 65-73.

[13] A. Debbouche, J. J. Nieto, Sobolev type fractional abstract evolution
equations with nonlocal conditions and optimal multi-controls. Appl.
Math. and Comp. 245 (2014), 74-85.

[14] A. Debbouche, J. J. Nieto, D. Torres, Optimal solutions to relaxation
in multiple control problems of Sobolev type with nonlocal nonlinear
fractional differential equations, J. Optim. Theory Appl. 174 (2017),
7-31.

[15] A. Debbouche, D. Torres, Sobolev type fractional dynamic equations
and optimal multi-integral controls with fractional nonlocal conditions.
Fract. Cale. Appl. Anal. 18, No 1 (2015), 95-121; DOIL: 10.1515/fca-
2015-0007; https://www.degruyter.com/view/j/fca.2015.18.issue-1/fca-
2015-0007 /fca-2015-0007.xml

[16] A. Favaron, A. Favini, Maximal time regularity for degenerate evolution
integro-differential equations, J. of Fvol. Equations 10 (2010), 377-412.

[17] A. Favini, A. Lorenzi, Identification problems for singular integro-
differential equations of parabolic type II. Nonlinear Anal. 56 (2004),
879-904.

[18] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces.
Pure and Applied Math., 15, Dekker, New York-Basel-Hong Kong
(1999).

[19] M. Feckan, J. Wang, Y. Zhou, Controllability of fractional functional
evolution equations of Sobolev type via characteristic solution operators.
J. Optim. Theory Appl. 156 (2013), 79-95.

[20] V. Keyantuo, C. Lizama, M. Warma, Spectral criteria for solvability of
boundary value problems and positivity of solutions of time-fractional
differential equations, Abstr. Appl. Anal. 2013 (2013), Art. ID 614328,
11 pp.

[21] M. Li, C. Chen, F. Li, On fractional powers of generators of fractional
resolvent families. J. Funct. Anal. 259 (2010), 2702-2726.

[22] F. Li, J. Liang, H. K. Xu, Existence of mild solutions for fractional
integrodifferential equations of Sobolev type with nonlocal conditions.
J. Math. Anal. Appl. 391 (2012), 510-525.

[23] K. Li, J. Peng, J. Jia, Cauchy problems for fractional differential equa-
tions with Riemann-Liouville fractional derivatives. J. Funct. Anal. 263,
No 2 (2012), 476-510.

[24] J. Liang, T. Xiao, Abstract degenerate Cauchy problems in locally con-
vex spaces, J. Math. Anal. Appl. 259 (2001), 398-412.

[25] J. Lightbourne III, S. Rankin III, A partial functional-differential equa-
tion of Sobolev type. J. Math. Anal. Appl. 93 (1983), 328-337.



SUBORDINATION PRINCIPLE FOR FRACTIONAL ... 21

[26] C. Lizama, Regularized solutions for abstract Volterra equations. J.
Math. Anal. Appl. 243 (2000), 278-292.

[27] Y. Luchko, Subordination principles for the multi-dimensional
space-time-fractional diffusion-wave equation (with English, Russian,
Ukrainian summary). Teor. Imovir. Mat. Stat. No 98 (2018), 121-141;
Reprinted in: Theory Probab. Math. Statist. 98 (2019), 127-147.

[28] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity:
An Introduction to Mathematical Models. Imperial College Press, (2010).

[29] G. Marinoschi, Functional Approach to Nonlinear Models of Water
Flow in Soils. Mathematical Modeling, Theory and Applications, Vol.
21, Springer, Dordrecht (2006).

[30] Z. Mei, J. Peng, Y. Zhang, An operator theoretical approach to
Riemann-Liouville fractional Cauchy problem. Math. Nachr. 288 (2015),
784-797.

[31] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Frac-
tional Differential Equations. Wiley, New York (1993).

[32] H. Pollard, The completely monotonic character of the Mittag-Leffler
function E,(—x). Bull. Amer. Math. Soc. 54 (1948), 1115-1116.

[33] G. Sviridyuk, V. Fedorov, Linear Sobolev Type Equations and Degen-
erate Semigroups of Operators. De Gruyter (2003).

[34] T. Xiao, J. Liang, The Cauchy Problem for Higher-order Abstract
Differential Equations. Lecture Notes in Mathematics 1701, Springer
(1998).

Instituto de Matemdtica y Fisica
Universidad de Talca
Casilla 747, Talca, CHILE

e-mail: rponce@inst-mat.utalca.cl



