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Abstract. In this paper we study the existence of mild solutions to subdiffusion equations with memory

(∗)

 ∂α
t u(t) = Au(t) +

∫ t

0
κ(t− s)Au(s)ds, t ≥ 0

u(0) = x,

where 0 < α < 1, A is a closed linear operator defined on a Banach space X, the initial value x belongs

to X and κ is a suitable kernel in L1
loc(R+). First, we find a subordination formula for the solution

operator of (∗) and then we study its connection with the existence of mild solution to the first order

diffusion equation with memory.

1. Introduction

In the problem of the heat conduction, the classical model reads as ut = λ∆u+ f, in D := Ω× J
u(x, t) = 0, on ∂D × J
u(x, 0) = u0(x), in Ω

(1.1)

where Ω is a bounded domain in RN , (N = 1, 2, 3), J = (0, T ], T > 0, f is a suitable function (known
as the forcing term), λ > 0 is the thermal diffusion coefficient, ∆ is de Laplacian operator defined in
certain domain, u0(x) is the initial temperature at point x ∈ Ω and ∂Ω denotes the boundary of Ω. In
homogeneous and isotropic media, this model gives a good prediction of the temperature u(x, t) at time t
in any x point of Ω. However, in some materials, such as materials with fading memory, particularly at low
temperature, this model is not completely satisfactory. Moreover, in this model the thermal disturbance
at any point is propagated instantly to everywhere of the domain, which is in general unrealistic. The
theory of heat conduction in such materials was firstly studied by Gurtin and Pipkin [14] where the
authors, after a linearization, arrived to the model given by the Volterra equation

(1.2)

 u′(t) = Au(t) +

∫ t

0

a(t− s)Au(s)ds+ f(t), t ≥ 0

u(0) = x,

where A is a closed operator (typically is the Laplacian operator), a is a locally integrable kernel known
as the heat relaxation function, and f is a suitable continuous function. The mild solution to equation
(1.2) it is well known: if A is the generator of a resolvent family {Ra(t)}t≥0 (see [12]), then the solution
u to (1.2) is given by the variation of constants formula

(1.3) u(t) = Ra(t)x+

∫ t

0

Ra(t− s)f(s)ds, t ≥ 0,
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where the Laplace transform ·̂ of Ra(t) satisfies

R̂a(λ) =
1

1 + â(λ)

(
λ

1 + â(λ)
−A

)−1

for all λ ∈ C such that λ
1+â(λ) ∈ ρ(A). The existence of mild solutions to equations with memory has

been widely study in the last decades, see for instance [13, 17, 32, 31, 33] and the references therein. We
notice that if a(t) = 0 for all t ≥ 0, (that is, the heat equation without memory) then Ra(t) corresponds
to the C0-semigroup generated by A.

In the last two decades, the theory of fractional differential equations has been a subject of great interest
in many areas of mathematics, physics, mechanics, chemistry and biology, see for instance [18, 20, 24, 25].
In particular, recently the subdiffusion equation with memory in porous media

(1.4)

 ∂αt u(t) = Au(t) +

∫ t

0

κ(t− s)Au(s)ds+ f(t), t ≥ 0

u(0) = x,

where ∂αt u denotes the Caputo fractional derivative of u, 0 < α < 1, x ∈ X, and κ is suitable kernel has
been studied in [21, 22] and [23]. Moreover, very recently, the authors in [1] have obtained interesting

results on the study of the existence and uniqueness of mild solutions to (1.4) for κ(t) = e−ρt tµ−1

Γ(µ) where

ρ ≥ 0 and 0 < µ ≤ 1.
On the other hand, if a(t) = κ(t) = 0 for all t ≥ 0 in equations (1.2) and (1.4), then there exists an

interesting relation (known as subordination principle, see for instance [2, 5, 6, 7]): if A is the generator
of a C0-semigroup {T (t)}t≥0, then A it also generates the α-times resolvent family {Sα(t)}t≥0 given by

(1.5) Sα(t)x =

∫ ∞

0

Φα(r)T (rt
α)xdr, t ≥ 0, x ∈ X,

where Φα is the Wright type function ([24, Appendix F])

Φα(z) :=

∞∑
n=0

(−z)n

n!Γ(−αn+ 1− α)
=

∫
γ

µα−1eµ−zµα

dµ,

where γ is a contour which starts and ends at −∞ and encircles the origin once counterclockwise, see for
instance [5, Chapter 3]. This interesting property implies (in case a ≡ κ ≡ 0) that if A is the generator
of a C0-semigroup {T (t)}t≥0, then the solution to (1.4) is given by

u(t) = Sα(t)x+

∫ t

0

Pα(t− s)f(s)ds,

where {Sα(t)}t≥0 is the fractional resolvent family given in (1.5) and {Pα(t)}t>0 is the family defined by
(see [19, Theorem 3.1])

Pα(t) = α

∫ ∞

0

tα−1rΦα(r)T (rt
α)dr, t > 0.

The subordination principles are useful to study parabolic as well as hyperbolic problems, see for
instance [29, Chapter I, Section 4]. In this paper, we study the problem of the existence of mild solutions
to the subdiffusion equation with memory (1.4) and its connection with the existence of mild solution to
the diffusion equation with memory (1.2) via a subordination principle. More precisely, in this paper we
prove that if A is the generator of a resolvent family {Ra(t)}t≥0 (associated to the equation (1.2)) then
a subordination principle, allows to prove that A is also the generator of a fractional resolvent family
{Rα(t)}t>0 and then, the solution to (1.4) can be written using a variation of parameters formula (as in
(1.3)) in terms of {Rα(t)}t>0.
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2. Resolvent families and A Subordination Principle

Given a Banach spaces (X, ∥ · ∥), we denote by B(X) to the Banach space of all bounded and linear
operators from X into X. For a closed linear operator A on X, ρ(A) denotes the resolvent set of A and
R(λ,A) = (λ−A)−1 is the resolvent operator of A which is defined for all λ ∈ ρ(A).

A strongly continuous family of linear operators {S(t)}t≥0 ⊂ B(X) is said to be exponentially bounded
if there exist constants M > 0 and w ∈ R such that ∥S(t)∥ ≤Mewt, for all t > 0.

Definition 2.1. Let A be a closed and linear operator defined on a Banach space X and a ∈ L1
loc(R+).

We say that A is the generator of a resolvent family, if there existM > 0, ω ≥ 0 and a strongly continuous
function Ra : [0,∞) → B(X) such that ∥Ra(t)∥ ≤Meωt for all t ≥ 0, {λ : Reλ > ω} ⊂ ρa(A) and for all
x ∈ X,

1

1 + â(λ)

(
λ

1 + â(λ)
−A

)−1

x =

∫ ∞

0

e−λtRa(t)xdt, Reλ > ω,

where

ρa(A) :=

{
µ ∈ C :

(
µ

1 + â(µ)
−A

)
is invertible and

(
µ

1 + â(µ)
−A

)−1

is bounded

}
.

In this case, {Ra(t)}t≥0 is called the resolvent family generated by A.

If A is the generator of a resolvent family {Ra(t)}t≥0, c(t) := 1 and b(t) := 1 + (1 ∗ a)(t), then
{Ra(t)}t≥0 is a (b, c)-regularized family according to [27], and in particular, if a ≡ 0, then the resolvent
family {Ra(t)}t≥0 corresponds to the C0-semigroup generated by A. It is a well-known fact that if A
generates a resolvent family {Ra(t)}t≥0, then solution u to (1.2) is given by the variation of parameters
formula

(2.6) u(t) = Ra(t)x+

∫ t

0

Ra(t− s)f(s)ds, t ≥ 0.

Given α > 0, we define the function gα as gα(t) :=
ta−1

Γ(α) , where Γ(·) is the Gamma function. We note

that if α, β > 0, then gα+β = gα ∗ gβ , where (f ∗ g) denotes the usual finite convolution (f ∗ g)(t) =∫ t

0
f(t− s)g(s)ds. For 0 < α < 1, the Caputo fractional derivative of order α of a function f is defined by

∂αt f(t) := (g1−α ∗ f ′)(t) =
∫ t

0

g1−α(t− s)f ′(s)ds.

An easy computation shows that if α = 1, then ∂1t = d
dt . For more details, examples and applications on

fractional calculus, we refer to the reader to [24, 25].

For a locally integrable function f : [0,∞) → X, we define the Laplace transform of f, denoted by f̂(λ)
(or L(f)(λ)) as

f̂(λ) =

∫ ∞

0

e−λtf(t)dt,

provided the integral converges for some λ ∈ C. An easy computation shows that ĝα(λ) = 1
λα for all

Re(λ) > 0 and applying the properties of the Laplace transform, it is easy to see that

∂̂αt f(λ) = λαf̂(λ)− λα−1f(0)(2.7)

for 0 < α ≤ 1. Here, the power λα is uniquely defined by λα := |λ|αeiarg(λ), with −π < arg(λ) < π.
For α, β > 0 and z ∈ C, the Mittag-Leffler function Eα,β is defined by

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
.
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Given α > −1, β ∈ C and z ∈ C, the Wright function Wα,β is defined by

Wα,β(z) :=

∞∑
k=0

zk

k!Γ(αk + β)
.

If β ≥ 0, then for all z ∈ C and α > −1, we have (see [24]) that

Wα,β(z) =
1

2πi

∫
Ha

µ−βeµ+zµ−α

dµ,

where Ha denotes the Hankel path defined as a contour that begins and t = −∞− ia (a > 0), encircles
the branch cut that lies along the negative real axis, and ends up at t = −∞+ ib (b > 0), see for instance
[24].

Definition 2.2. [2, Definition 3.1] For 0 < α < 1 and β ≥ 0, we define the function ψα,β in two variables
by

ψα,β(t, s) := tβ−1W−α,β(−stα), t > 0, s ∈ C.

By [2, Theorem 3.2] it follows that if 0 < α < 1 and β ≥ 0, then ψα,β(t, s) ≥ 0 for t, s > 0 and

(2.8)

∫ ∞

0

e−λtψα,β(t, s)dt = λ−βe−λαs, for s, λ > 0.

Definition 2.3. Let A be a closed and linear operator defined on a Banach space X and κ ∈ L1
loc(R+).

Given α, β > 0 we say that A is the generator of an (α, β)-resolvent family, if there exist ω ≥ 0
and a strongly continuous function Rκ

α,β : (0,∞) → B(X) such that Rκ
α,β(t) is exponentially bounded,{

λα

1+κ̂(λ) : Reλ > ω
}
⊂ ρ(A), and for all x ∈ X,

(2.9)
λα−β

1 + κ̂(λ)

(
λα

1 + κ̂(λ)
−A

)−1

x =

∫ ∞

0

e−λtRκ
α,β(t)xdt, Reλ > ω.

In this case, {Rκ
α,β(t)}t>0 is called the (α, β)-resolvent family generated by A.

We notice that if α = β = 1, then a (1, 1)-resolvent family {Rκ
1,1(t)}t>0 is a resolvent family according

to Definition 2.1.
If b(t) := gα(t) + (κ ∗ gα)(t) and A is the generator of an (α, β)-resolvent family {Rκ

α,β(t)}t>0 then

{Rκ
α,β(t)}t>0 is a (b, gβ)-regularized family as well (according to [27]), and we have the following result,

see [27]. See also [1, Definition 2.3 and Remark 2.4] and [2, Section 4]

Proposition 2.4. If α, β > 0 and A generates an (α, β)-resolvent family {Rκ
α,β(t)}t>0, then

(1) lim
t→0+

Rκ
α,β(t)x

gβ(t)
= x, for all x ∈ X,

(2) Rκ
α,β(t)x ∈ D(A) and Rκ

α,β(t)Ax = ARκ
α,β(t)x for all x ∈ D(A) and t > 0

(3) For all x ∈ D(A),

Rκ
α,β(t)x = gβ(t)x+

∫ t

0

b(t− s)ARκ
α,β(s)xds,

(4)
∫ t

0
b(t− s)Rκ

α,β(s)xds ∈ D(A) and

Rκ
α,β(t)x = gβ(t)x+A

∫ t

0

b(t− s)Rκ
α,β(s)xds,

for all x ∈ X,

where b(t) = gα(t) + (κ ∗ gα)(t).

The next result gives a subordination theorem for (α, β)-resolvent families.
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Theorem 2.5 (Subordination). Let 0 < α < 1 and ε ≥ 0. Let A be the generator of a resolvent family
{Ra(t)}t≥0 and κ ∈ L1

loc(R+) be a given kernel. Suppose that ∥Ra(t)∥ ≤ Meωt for all t ≥ 0, where
M,ω ≥ 0. Assume that there exist a ∈ L1

loc(R+) and ν ≤ 0 and such that â(λα) = κ̂(λ) for all Re(λ) > ν.
Then, A is the generator of the (α, α+ ε)-resolvent family {Rκ

α,α+ε(t)}t>0 defined by

(2.10) Rκ
α,α+ε(t)x :=

∫ ∞

0

ψα,ε(t, s)R
a(s)xds, t > 0, x ∈ X

where ψα,ε is the Wright type function given in Definition 2.2. Moreover, if ε > 0, then

(2.11) Rκ
α,α+ε(t)x = (gε ∗Rκ

α,α)(t)x,

for all x ∈ X and t > 0.

Proof. The exponential boundedness and strong continuity of {Rκ
α,α+ε(t)}t>0 follows as in the proof of

[2, Theorem 4.5]. See also [29, Chapter I, Section 4]. We give here only the details in order to prove
that {Rκ

α,α+ε(t)}t>0 given by (2.10) defines an (α, α+ ε)-resolvent family. In fact, since â(λα) = κ̂(λ) for
all Re(λ) > ν and {Ra(t)}t≥0 is an exponentially bounded resolvent family, by (2.8) we can apply the
Fubini’s theorem, and by the same equation (2.8) we obtain∫ ∞

0

e−λtRκ
α,α+ε(t)xdt =

∫ ∞

0

e−λt

(∫ ∞

0

ψα,ε(t, s)R
a(s)xds

)
dt

=

∫ ∞

0

(∫ ∞

0

e−λtψα,ε(t, s)dt

)
Ra(s)xds

= λ−ε

∫ ∞

0

e−λαsRa(s)xds

=
λ−ε

1 + â(λα)

(
λα

1 + â(λα)
−A

)−1

x

=
λα−(α+ε)

1 + κ̂(λ)

(
λα

1 + κ̂(λ)
−A

)−1

x

for all λ such that λα

1+κ̂(λ) ∈ ρ(A). The identity (2.11) follows directly from the properties of the Laplace

transform, concluding the proof. �

Corollary 2.6. Let 0 < α < 1. Let A be the generator of a resolvent family {Ra(t)}t≥0 and κ ∈ L1
loc(R+)

be a given kernel. Suppose that ∥Ra(t)∥ ≤ Meωt for all t ≥ 0, where M,ω ≥ 0. Assume that there exist
a ∈ L1

loc(R+) and ν ≤ 0 such that â(λα) = κ̂(λ) for all Re(λ) > ν. Then, A is the generator of the
resolvent families {Rκ

α,α(t)}t>0 and {Rκ
α,1(t)}t>0 which are, respectively, defined by

(2.12) Rκ
α,α(t)x :=

∫ ∞

0

ψα,0(t, s)R
a(s)xds, t > 0,

and

(2.13) Rκ
α,1(t)x :=

∫ ∞

0

ψα,1−α(t, s)R
a(s)xds, t > 0.

Moreover, if f is Laplace transformable, then the unique mild solution to Problem (1.4) is given by

u(t) = Rκ
α,1(t)x+

∫ t

0

Rκ
α,α(t− s)f(s)ds.(2.14)

Proof. For 0 < α < 1, we observe that (2.12) and (2.13) follow with ε = 0 and ε = 1− α, respectively, in
the Subordination Theorem 2.5.
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On the other hand, the Laplace transform of Rκ
α,α(t) and R

κ
α,1(t) are respectively given by

R̂κ
α,α(λ) =

1

1 + κ̂(λ)

(
λα

1 + κ̂(λ)
−A

)−1

and R̂κ
α,1(λ) =

λα−1

1 + κ̂(λ)

(
λα

1 + κ̂(λ)
−A

)−1

,

for all λ such that λα

1+κ̂(λ) ∈ ρ(A). Taking Laplace transform in both sides of (1.4) we obtain by (2.7) that

û(λ) =
λα−1

1 + κ̂(λ)

(
λα

1 + κ̂(λ)
−A

)−1

x+
1

1 + κ̂(λ)

(
λα

1 + κ̂(λ)
−A

)−1

f̂(λ)

which implies that u is given by (2.14), by the uniqueness of the Laplace transform. �

We notice that by [26, Formula (3.8) in Corollay 3.3] and [26, Corollay 3.3 (b)], the Wright type
functions ψα,0 and ψα,1−α in Corollary 2.6 can be written, respectively as

ψα,0(t, s) =
1

π

∫ ∞

0

etρ cos θ−sρα cosαθ · sin(tρ sin θ − sρ sinαθ + θ)dρ,

for π/2 < θ < π and

(2.15) ψα,1−α(t, s) =
1

π

∫ ∞

0

ρα−1e−sρα cosα(π−θ)−tρ cos θ · sin (tρ sin θ − sρα sinα(π − θ) + α(π − θ)) dρ,

for θ ∈ (π − π
2α , π/2). Moreover, since

R̂κ
α,1(λ) =

1

λ1−α

1

1 + κ̂(λ)

(
λα

1 + κ̂(λ)
−A

)−1

= ĝ1−α(λ)R̂κ
α,α(λ)

we obtain, by the uniqueness of the Laplace transform, that Rκ
α,1(t) can be written as

Rκ
α,1(t) = (g1−α ∗Rκ

α,α)(t), t > 0.

On the other hand, we notice that in the Hypotheses of Theorem 2.5, given a kernel κ ∈ L1
loc(R+)

we need to find a kernel a ∈ L1
loc(R+) such that â(λα) = κ̂(λ) for all Re(λ) > ν. Now, we show some

examples of such kernels.

Example 2.7. If γ ∈ R, ρ, µ > 0, and κ(t) = γe−ρt tµ−1

Γ(µ) , then κ̂(λ) =
γ

(λ+ρ)µ , for all λ > −ρ, which means

that the kernel a needs to verify â(λα) = γ/(λ + ρ)µ, that is â(λ) = γ

(λ
1
α +ρ)µ

. By [16, Formula (11.13),

p.13] we conclude that

(2.16) a(t) = γt
µ
α−1Eµ

1
α , µα

(−ρt 1
α ),

where, for p, q, r > 0, Er
p,q(z) is the generalized Mittag-Leffler type function defined by

Er
p,q(z) =

∞∑
j=0

(r)jz
j

j!Γ(pj + q)
, z ∈ C,

where (r)j denotes the Pochhammer symbol defined by (r)j = Γ(r+j)
Γ(r) . The kernel κ (known as the relax-

ation kernel) appears in problems of viscoelasticity or heat conduction with memory, see for instance [9]
and [29, Chapter I, Section 5]. Fractional differential equations in the form of (1.4) with this kernel have
been recently studied in [3, 8, 30]. In particular, if µ = 1, then κ(t) = γe−ρt, and therefore

a(t) = γt
1
α−1E 1

α , 1
α
(−ρt 1

α ).

This exponential kernel κ(t) typically appears when one consider Maxwell materials in viscoelasticity
theory. In that context, the parameters γ and ρ are given by γ = τ and ρ = τ/ϖ, where τ corresponds
to the elastic modulus of the material and ϖ to the coefficient of viscosity, see for instance [10] and [29,
Chapter II, Section 9].
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Remark 2.8. We remark that, very recently, the authors in [1] have studied the existence and uniqueness
of local and global mild solutions, blow up and critical nonlinearities for

(2.17)

 ∂αt u(t) = Au(t) +

∫ t

0

κ(t− s)Au(s)ds+ f(t, u(t)), t ∈ [0, T ]

u(0) = x,

where T > 0, −A is a sectorial operator defined in a Banach space X, x ∈ X, f is a continuous function

and κ(t) = −e−ρt tµ−1

Γ(µ) , where ρ ≥ 0 and 0 < µ ≤ 1. More concretely, in [1, Theorem 1.1] the authors

proved that A generates the resolvent families {S(t)}t>0 and {R(t)}t>0 given by

S(t) =
1

2πi

∫
Γ

eλt
λα−1(λ+ ρ)µ

(λ+ ρ)µ − 1

(
λα(λ+ ρ)µ

(λ+ ρ)µ − 1
−A

)−1

dλ, t > 0,

and

R(t) =
1

2πi

∫
Γ

eλt
(λ+ ρ)µ

(λ+ ρ)µ − 1

(
λα(λ+ ρ)µ

(λ+ ρ)µ − 1
−A

)−1

dλ, t > 0,

(where Γ is a suitable Hankel’s path) which correspond, respectively, to the resolvent families {Rκ
α,α(t)}t>0

and {Rκ
α,1(t)}t>0 given in Corollary 2.6.

On the other hand, in order to have the conclusions in Theorem 2.5 we need to find conditions on the
operator A and on the kernel κ implying that A is the generator of a resolvent family {Ra(t)}t≥0. Now,
we study such conditions.

A linear operator A : D(A) ⊂ X → X is said to be ω-sectorial of angle θ if there are constants ω ∈ R,
M > 0 and θ ∈ (π/2, π) such that ρ(A) ⊃ Sθ,ω := {z ∈ C : z ̸= ω : | arg(z − ω)| < θ} and

(2.18) ∥(z −A)−1∥ ≤ M

|z − ω|
for all z ∈ Sθ,ω.

In order to simplify the presentation of the results, we assume that ω = 0. In that case, we write
A ∈ Sect(θ,M) and we denote the sector Sθ,0 as Sθ. These operators have been studied widely, both in
abstract settings (see for instance [4, 15]) and for their applications in the study of linear and nonlinear
integro/differential equations, see for example [11, 19, 28, 34].

From (1.2) we now consider the homogeneous problem

(2.19)

 u′(t) = Au(t) +

∫ t

0

a(t− s)Au(s)ds, t ≥ 0

u(0) = x,

where A with domain D(A) is a densely defined linear sectorial operator on the Banach space X, x ∈ X
and the kernel a ∈ L1

loc(R+) satisfies â(λα) = κ̂(λ) for all Re(λ) > ν. It is easy to verify that (2.19) is
equivalent to the integral equation

(2.20) u(t) = x+

∫ t

0

c(t− s)Au(s)ds, t ≥ 0,

where c(t) := 1 + (1 ∗ a)(t), and by [29, Chapter I], the well-posedness of (2.19) (or equivalently, the
integral equation (2.20)) is equivalent to the existence of the resolvent {Ra(t)}t≥0. In this case, for each
x ∈ X, the unique mild solution to (2.19) is given by

(2.21) u(t) = Ra(t)x, t ≥ 0.

Definition 2.9. [29, p. 69] Let k ∈ N. Let b ∈ L1
loc(R+) be of subexponential growth, which means∫ ∞

0

e−εt|b(t)|dt <∞, for all ε > 0.
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The kernel b(t) is called 1-regular (of constant c) if there is a constant c > 0 such that

(2.22) |λb̂′(λ)| ≤ c|b̂(λ)|, for all Re(λ) > 0,

where b̂′(λ) is the derivative of b̂(λ) with respect to λ.

Remark 2.10.

We notice that if b is a 1-regular kernel of constant c ≤ 1 with b̂(λ) ̸= −1 for all λ ∈ C, then |b̂(λ)|
|1+b̂(λ)|

≤ 1

for all Re(λ) > 0. In fact, let λ = reiϕ with 0 ≤ ϕ ≤ π
2 and r > 0. For g(λ) := b̂(λ) we have

arg
(
b̂(λ)

)
= Im(ln(g(reiϕ))) = Im

∫ ϕ

0

d

dt
ln(g(reit))dt = Im

∫ ϕ

0

g′(reit)ireit

g(reit)
dt.

Since b is a 1-regular kernel, there exists a constant c > 0 such that |λb̂′(λ)| ≤ c|b̂(λ)|, for all Re(λ) > 0,
and we obtain

| arg
(
b̂(λ)

)
| ≤ Im

∫ ϕ

0

|g′(reit)ireit|
|g(reit)|

dt ≤ cϕ ≤ π

2
,

which implies that Re(b̂(λ)) > 0 for all Re(λ) > 0 and therefore |b̂(λ)|
|1+b̂(λ)|

≤ 1, for all Re(λ) > 0.

Theorem 2.11 (Generation). Let A ∈ Sect(θ,M) be a sectorial operator. Suppose that b is a 1-regular

kernel with b̂(λ) ̸= −1 for all Re(λ) > ν, where ν ≤ 0. If the constant c in (2.22) satisfies (1 + c)π2 ≤ θ,

then A is the generator of a resolvent family {Rb(t)}t≥0.

Proof. Define h(λ) = λ
1+b̂(λ)

. We write λ = reiϕ with |ϕ| ≤ π
2 and r > 0. We notice that we may assume

that ϕ ≥ 0. Then

arg

(
λ

1 + b̂(λ)

)
= Im(ln(h(reiϕ))) = Im

∫ ϕ

0

d

dt
ln(h(reit))dt = Im

∫ ϕ

0

h′(reit)ireit

h(reit)
dt.

An easy computation shows that

λh′(λ)

h(λ)
= 1− λb̂′(λ)

1 + b̂(λ)

and therefore

arg

(
λ

1 + b̂(λ)

)
= Im

∫ ϕ

0

(
1− reitb̂′(reit)

1 + b̂(reit)

)
dt.

The 1-regularity of b, the hypothesis and Remark 2.10 imply that∣∣∣∣∣arg
(

λ

1 + b̂(λ)

)∣∣∣∣∣ ≤ Im

∫ ϕ

0

(
1 +

c|b̂(reit)|
|1 + b̂(reit)|

)
dt ≤ (1 + c)ϕ ≤ (1 + c)

π

2
≤ θ.

This inequality shows that h(λ) ∈ Sθ and thus the function H given by H(λ) := 1
1+b̂(λ)

(
λ

1+b̂(λ)
−A

)−1

is well-defined. Since A is a sectorial operator, we obtain

∥λH(λ)∥ ≤ |h(λ)|∥(h(λ)−A)−1∥ ≤M.

On the other hand, since

λ2H ′(λ) = − λb̂′(λ)

1 + b̂(λ)
λH(λ)− (λH(λ))2

(
1− λb̂′(λ)

1 + b̂(λ)

)
,

the 1-regularity of b implies that

∥λ2H ′(λ)∥ ≤ c|b̂(λ)|
|1 + b̂(λ)|

M +M2

(
1 +

c|b̂(λ)|
|1 + b̂(λ)|

)
≤ cM + (1 + c)M2.
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Therefore,

∥λH(λ)∥+ ∥λ2H ′(λ)∥ ≤ (1 + c)(M +M2) =:M1,

for all Re(λ) > 0 and by [29, Proposition 0.1] we conclude

∥H(n)(λ)∥ ≤ M1n!

λn+1
, n ∈ N0, λ > 0,

and thus, for every µ > 0 we obtain

∥H(n)(λ)∥ ≤ M1n!

(λ− µ)n+1
, n ∈ N0, λ > µ.

Finally, from the generation Theorem [29, Theorem 1.3] we conclude that A is the generator of a resolvent
family {Rb(t)}t≥0 such that ∥Rb(t)∥ ≤M1e

µt for all t ≥ 0. �

Lemma 2.12. Let κ ∈ L1
loc(R+) be a given kernel. Suppose that 1

2 < α < 1 and there exist a ∈ L1
loc(R+)

and ν ≤ 0 such that â(λα) = κ̂(λ) for all Re(λ) > ν. Then κ is a 1-regular kernel if and only if a is a
1-regular kernel.

Proof. Suppose that κ is a 1-regular kernel. If a is not a 1-regular kernel, there exists λ0 ∈ C with
Re(λ0) > 0 such that

|λ0â′(λ0)| ≥ n|â(λ0)|,

for all n ∈ N. Taking n → ∞ we obtain â(λ0) = 0. For this λ0 we have two options: Re(λ
1
α
0 ) < 0 or

Re(λ
1
α
0 ) > 0. If Re(λ

1
α
0 ) < 0, then Re(−λ

1
α
0 ) > 0 and therefore Re((−λ

1
α
0 )α) > 0 (because α < 1). If we

write λ0 = reiϕ with 0 < ϕ < π
2 then we obtain (−λ

1
α
0 )α = re(ϕ+απ)i. Since 0 < ϕ < π

2 ,
1
2 < α < 1 we

obtain π
2 < ϕ+ απ < 3π

2 , which is impossible because Re((−λ
1
α
0 )α) > 0. Therefore, Re(λ

1
α
0 ) > 0 ≥ ν. We

notice that â(λα) = κ̂(λ) for all Re(λ) > ν if and only if â(λ) = κ̂(λ
1
α ) for all Re(λ

1
α ) > ν and therefore

0 = â(λ0) = κ̂(λ
1
α
0 ), which means that κ̂ has a zero in the open right halfplane, a contradiction, because

κ is a 1-regular kernel (see [29, Section 3.2, p.69]).
Conversely, if a is a 1-regular kernel, then there exists a positive constant c such that |λâ′(λ)| ≤ c|â(λ)|

for all Re(λ) > 0. Since 1
2 < α < 1 we conclude that if Re(λ) > 0, then Re(λα) > 0 ≥ ν and |λκ̂′(λ)| =

|λαâ′(λα)| ≤ c|â(λα)| = c|κ̂(λ)|. �

Remark 2.13. An easy computation shows that the kernels κ given in Example 2.7 are 1-regular and
therefore (by Lemma 2.12) the corresponding kernels a ∈ L1

loc(R+) are 1-regular as well ( 12 < α < 1) and
satisfy the hypotheses in Generation Theorem 2.11.

We notice that if κ ∈ L1
loc(R+) is a 1-regular kernel, then there exists c > 0 such that |λκ̂′(λ)| ≤ c|κ̂(λ)|

for all Re(λ) > 0 ≥ ν. Moreover, if 1
2 < α < 1, then the kernel a satisfying â(λα) = κ̂(λ) for all Re(λ) > ν

is 1-regular as well, and therefore there exists d > 0 such that |λâ′(λ)| ≤ d|â(λ)| for all Re(λ) > 0 ≥ ν.

Thus |λâ′(λ)| = 1
α |λ

1
α k̂′(λ

1
α )| ≤ c

α |k̂(λ
1
α )| = c

α |â(λ)|, which implies that d ≤ c
α . Since κ̂(λ) = â(λα), we

obtain, similarly, that |λκ̂′(λ)| = α|λαâ′(λα)| ≤ αd|â(λα)| = αd|κ̂(λ)| and therefore c ≤ αd. We conclude
that κ is a 1-regular kernel of constant c > 0 if and only if a is a 1-regular of constant c

α .

On the other hand, for the given kernel κ ∈ L1
loc(R+), in the Subordination Theorem 2.5 we need to

assume the existence of a ∈ L1
loc(R+) and ν ≤ 0 such that â(λα) = κ̂(λ) for all Re(λ) > ν and that

A is the generator of a resolvent family {Ra(t)}t≥0. The existence of such kernel a is closely related to
completely positive and Bernstein functions (see for instance [29, Chapter I, Section 4]). The Generation
Theorem 2.11 shows that if A ∈ Sect(θ,M) and the constant c verifies the condition (1 + c

α )
π
2 ≤ θ, then

A generates a resolvent family {Ra(t)}t≥0, and therefore, the Lemma 2.7 and Corollary 2.6 imply that
if 1

2 < α < 1 and κ ∈ L1
loc(R+) is a 1-regular kernel, then A is the generator of the resolvent families

{Rκ
α,α(t)}t>0 and {Rκ

α,1(t)}t>0 defined, respectively, by (2.12) and (2.13).
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We conclude that in order to study the existence of mild solutions to Problem (1.4) for a given 1-regular
kernel κ ∈ L1

loc(R+) we only need to find the kernel a ∈ L1
loc(R+) and ν ≤ 0 satisfying â(λα) = κ̂(λ) for

all Re(λ) > ν. The above conclusions are summarized in the next result.

Theorem 2.14. Let A ∈ Sect(θ,M) be a sectorial operator, κ ∈ L1
loc(R+) and 1

2 < α < 1. Assume

that there exist a ∈ L1
loc(R+) and ν ≤ 0 such that â(λα) = κ̂(λ) for all Re(λ) > ν. Suppose that κ is a

1-regular kernel and that the constant c in (2.22) satisfies (1 + c
α )

π
2 ≤ θ. If f is Laplace transformable,

then the Problem (1.4) has a unique mild solution u given by

u(t) = Rκ
α,1(t)x+

∫ t

0

Rκ
α,α(t− s)f(s)ds,

where {Rκ
α,1(t)}t>0 and {Rκ

α,α(t)}t>0 are given in Corollary 2.6.

3. Examples

In this section, we consider some examples of the operator A and we obtain the explicit solution to
(1.4).

3.1. The case where A = ϱI and κ(t) = γ tµ−1

Γ(µ) e
−ρt. Suppose that A = ϱI for some ϱ > 0, and assume

that ρ, µ > 0, γ ∈ R \ {0} and 1
2 < α < 1. The homogeneous initial value problem (1.4) reads

(3.23)

∂αt u(t) = ϱu(t) +
ϱγ

Γ(µ)

∫ t

0

e−ρ(t−s)(t− s)µ−1u(s)ds, t > 0,

u(0) = x.

If Re(λ) > 0, then
|λκ̂′(λ)|
|κ̂(λ)|

=
µ|λ|

|λ+ ρ|
≤ µ

which means that κ is a 1-regular kernel with constant c = µ. The Example 2.7 shows that there exist a
kernel a ∈ L1

loc(R+) and ν := −ρ ≤ 0 such that â(λα) = κ̂(λ) for all Re(λ) > ν, and therefore, the Lemma
2.12 implies that a is a 1-regular kernel as well (with constant µ

α ). On the other hand, we notice that A is

a sectorial operator of angle θ for all θ ∈ (π/2, π) and thus for 0 < µ < 1
2 we have (1+µ/α)π2 ≤ θ. By the

Generation Theorem 2.11, the operator A generates a resolvent family {Ra(t)}t≥0 and by Subordination
Theorem 2.5 A is also a generator of an (α, 1)-resolvent family {Rκ

α,1(t)}t>0. Therefore, the solution u
to (3.23) is given by u(t) = Rκ

α,1(t)x for all t > 0. We notice that in this case, Rκ
α,1(t) can be found

explicitly. In fact, since â(λ) = γ/(λ
1
α + ρ)µ and A generates the resolvent family {Ra(t)}t≥0, then

R̂a(λ) =
1

1 + â(λ)

(
λ

1 + â(λ)
−A

)−1

=
(λ

1
α + ρ)µ

λ(λ
1
α + ρ)µ − ϱ(λ

1
α + ρ)µ − γϱ

=
1

(λ− ϱ)

1

1− γϱ

(λ−ϱ)(λ
1
α +ρ)µ

.

Since ∣∣∣∣ γϱ

(λ− ϱ)(λ
1
α + ρ)µ

∣∣∣∣ < 1,

for λ large enough, we obtain that

R̂a(λ) =

∞∑
k=0

ϱk

(λ− ϱ)k+1

(
γ

(λ
1
α + ρ)µ

)k

,

and by [16, Formula (11.13), p.13] we conclude that

Ra(t) =

∞∑
k=0

ϱkγk

k!

∫ t

0

(t− s)keϱ(t−s)s
µk
α −1Eµk

1
α ,µk

α

(−ρs 1
α )ds
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and therefore, the solution u to (3.23) is given by (see Corollary 2.6)

(3.24) u(t) = Rκ
α,1(t)x =

∞∑
k=0

ϱkγk

k!

∫ ∞

0

ψα,1−α(t, s)

∫ s

0

(s− r)keϱ(s−r)r
µk
α −1Eµk

1
α ,µk

α

(−ρr 1
α )xdrds,

where ψα,1−α is given in (2.15). We have proved the following result.

Proposition 3.15. Suppose that ϱ > 0, γ ∈ R and 1
2 < α < 1. If 0 < µ < 1

2 , then the unique solution u
to the Problem (3.23) is given by (3.24).

3.2. The case of a self-adjoint operator and κ(t) = γ tµ−1

Γ(µ) e
−ρt. Now, suppose that −A is a non-

negative and self-adjoint operator on the Hilbert space L2(Ω) where Ω ⊂ RN is a bounded open set.
If the operator A has a compact resolvent, then −A has a discrete spectrum and its eigenvalues satisfy
0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · and limn→∞ λn = ∞.

Denote by ϕn to the the normalized eigenfunction associated with λn. It is well known that {ϕn : n ∈ N}
is an orthonormal basis for L2(Ω), it is also total in D(A) and for all v ∈ D(A) we have

−Av =

∞∑
k=1

λn⟨v, ϕn⟩L2(Ω)ϕn.

As a consequence of Proposition 3.15, we have the following result.

Corollary 3.16. Let A be an operator as above. Suppose that κ(t) = γ tµ−1

Γ(µ) e
−ρt, where γ ∈ R \ {0}. If

0 < µ < 1
2 and 1

2 < α < 1, then the unique solution u to the Problem

(3.25)

 ∂αt u(t, x) = Au(t, x) +

∫ t

0

κ(t− s)Au(s, x)ds, t ≥ 0,

u(0, x) = u0(x),

where x ∈ Ω and u0 ∈ L2(Ω) is given by

(3.26) u(t, x) =

∞∑
n=1

∞∑
k=0

ϱkλkn
k!

∫ ∞

0

ψα,1−α(t, s)

∫ s

0

(s− r)keϱ(s−r)r
µk
α −1Eµk

1
α ,µk

α

(−ρr 1
α )u0(x)drds, t ≥ 0,

where ψα,1−α is given in (2.15).

Proof. Let A be as above. Consider the problem

(3.27)

 u′(t, x) = Au(t, x) +

∫ t

0

a(t− s)Au(s, x)ds, t ≥ 0, x ∈ Ω

u(0) = u0(x),

where a is given by (2.16). Multiplying both sides of (3.27) by ϕn(x) and integrating over Ω we obtain
that un(t) := ⟨u(t), ϕn⟩L2(Ω) is a solution of the systemu′n(t, x) = −λnun(t, x)− λn

∫ t

0

a(t− s)un(s, x)ds, t > 0, x ∈ Ω,

un(0, x) = u0,n(x),

(3.28)

where u0,n = ⟨u0, ϕn⟩L2(Ω), for all n ∈ N. Then, the solution to (3.28) is given by un(t, x) = Ra(t)u0(x),
t ≥ 0, x ∈ Ω, where Ra(t) is given by

Ra(t) =

∞∑
k=0

ϱkλkn
k!

∫ ∞

0

ψα,1−α(t, s)

∫ s

0

(s− r)keϱ(s−r)r
µk
α −1Eµk

1
α ,µk

α

(−ρr 1
α )drds.

Since κ is a 1-regular kernel with â(λα) = κ̂(λ) for all Re(λ) > −ρ and A is a sectorial operator of angle
θ for all θ ∈ (π/2, π) and 0 < µ < 1

2 we conclude by Theorem 2.14 and Proposition 3.15 that the solution
to (3.25) is given by (3.26) and the proof is finished. �
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