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Abstract

We characterize the existence and uniqueness of solutions of an abstract frac-
tional differential equation with infinite delay in Hölder spaces.
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1. Introduction

In this paper, we consider the following fractional differential equation with
infinite delay

Dβu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t), t ∈ R, (1.1)

where A is a closed linear operator defined on a Banach space X, a ∈ L1(R+) is
a scalar-valued kernel, f ∈ Cα(R;X), 0 < α < 1, and the fractional derivative
for β > 0 is taken in the sense of Caputo.

Fractional differential equations have been used by many researchers to ad-
equately describe the evolution of a variety of physical and biological processes.
Examples include studies in electrochemistry, electromagnetism, viscoelasticity,
rheology, among other. See, for instance [1, 26, 31] and [34] for further details.

When β = 1 in equation (1.1), we obtain the equation with infinite delay

u′(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t), t ∈ R. (1.2)

Equations of this kind arise, for example, in the study of heat flow in ma-
terials with memory as well as in some equations of population dynamics or in
viscoelasticity. In such applications the operator A is typically the Laplacian,
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the elasticity operator, the Stokes operator, or the biharmonic ∆2, among other.
See [38] and [40, Chapter III, Section 13] for further details.

In [4], Arendt, Batty and Bu study the existence and uniqueness of Hölder
continuous solutions to equation (1.1) in the case β = 1 and a ≡ 0, that is,

u′(t) = Au(t) + f(t), t ∈ R. (1.3)

These authors introduce the notion of Cα-multipliers and prove an operator-
valued Fourier multiplier theorem for Hölder spaces on the line. As a conse-
quence, the authors obtain a characterization, by means of a simple resolvent
estimates of the underlying operator, of the well-posedness of (1.3), in the sense
that there exists a unique classical solution to equation (1.3) in Hölder spaces.

Using the results of Arendt, Batty and Bu ([4]) about vector-valued Fourier
multipliers, some characterizations of the existence and uniqueness of solutions
(on the real line) for several classes of equations in Hölder spaces, have been
obtained in the last years. See [12, 18, 30, 39] for further information.

Existence of Hölder continuous solutions to fractional differential equations
in the form of (1.1) have been studied for example, by Clement, Gripenberg
and Londen using the method of the sum of Da Prato and Grisvard [16]. See
moreover El-Sayed and Herzallah [21, 22, 23] and references therein. Other ap-
proaches to the existence and uniqueness of solutions to fractional differential
equations can be found, for example, in [6, 9, 13, 17, 20, 32]. The obtained re-
sults give sufficient conditions to the existence and uniqueness of Hölder contin-
uous solutions to equations in the form of (1.1), but leaves as an open problem
to characterize the existence and uniqueness of Hölder solutions to fractional
differential equations.

Characterizations of the existence and uniqueness of solutions to the lin-
ear problem (1.1) have been studied only on periodic vector-valued Lebesgue
spaces, Lp2π(R;X), 1 < p < ∞, (where X is a UMD space) and in the scale of
periodic Besov spaces Bsp,q([0, 2π];X) (and therefore on periodic Hölder space
Cs([0, 2π];X)) by Bu [10, 11]. The main tool in these results are two operator-
valued Fourier multipliers theorems of Arendt and Bu [5, 7] on periodic vector-
valued spaces Lp2π(R;X), 1 < p < ∞, and Bsp,q([0, 2π];X). Using these results
on operator-valued multipliers, other fractional differential equations on periodic
vector-valued spaces have been recently studied in [29, 33]. In all these results
is obtained a relation between the existence and uniqueness of solutions to frac-
tional differential equations and the R-boundedness of a sequence of operators
(see [19, 27, 41]).

In this paper, we apply the method of operator-valued Fourier multipliers on
the line (see [4]) to characterize the well-posedness (or maximal regularity) of
the fractional differential equation (1.1) in Cα(R;X), the vector-valued Hölder
spaces for 0 < α < 1. More specifically, we show in Theorem 3.7 that if a is a
2-regular kernel, then the problem (1.1) is Cα-well posed if and only if

(iη)β

1 + ã(η)
∈ ρ(A), for all η ∈ R and sup

η∈R

∥∥∥∥∥ (iη)β

1 + ã(η)

(
(iη)β

1 + ã(η)
−A

)−1
∥∥∥∥∥ <∞,
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where ã denotes the Fourier transform of a, (more precisely of their extension
to R by setting them equal to 0 on (−∞, 0)).

We notice that, here the operator A is not necessarily the generator of a
C0-semigroup and there is not any restriction on the Banach space X.

It is remarkable that in the scalar case, that is A = ρI, where ρ ∈ R \ {0},
and a ≡ 0, we have that the unique Hölder solution to fractional differential
equation

Dβu(t) = ρu(t) + f(t), t ∈ R,

is explicitly given by

u(t) =

∫ t

−∞
(t− s)β−1Eβ,β(ρ(t− s)β)f(s)ds, t ∈ R,

where Eβ,β denotes the Mittag-Leffler function. See Example 5.13 below.
The paper is organized as follows. In Section 2, we review some results

about vector-valued Fourier multipliers and we recall the definition and some
basic properties on fractional calculus. Section 3 is devoted to our main result
(Theorem 3.7), where a characterization of the well-posedness (or maximal reg-
ularity) of equation (1.1) is obtained under some suitable assumptions on kernel
a. In Section 4, the equation Dβu(t) = Aγu(t) + f(t), where γ > 0, is studied
as a particular case of equation (1.1). Finally, some examples are examined in
Section 5.

2. Preliminaries

Let X and Y be Banach spaces. We denote by B(X,Y ) be the space of all
bounded linear operators from X to Y . If X = Y , we write simply B(X). Let
0 < α < 1. We denote by Cα(R;X) the space of all X-valued functions f on R,
such that

‖f‖α := sup
t6=s

‖f(t)− f(s)‖
|t− s|α

<∞.

If we define ‖f‖Cα := ‖f‖α+‖f(0)‖, then Cα(R;X) is a Banach space under
the norm ‖ · ‖Cα .

The kernel of the seminorm ‖ · ‖α on Cα(R;X) is the space of all constant
functions and the corresponding quotient space Ċα(R;X) is a Banach space in
the induced norm. We identify a function f ∈ Cα(R;X) with its equivalence
class

ḟ := {g ∈ Cα(R;X) : f − g ≡ constant}.

In this way, Ċα(R;X) may be identified with the space of all f ∈ Cα(R;X)
such that f(0) = 0. See [4, Section 5].

For n ∈ N ∪ {0} ∪ {∞}, Cn(R;X) denotes the set of X-valued functions
which are n-times differentiable on R.
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Given β > 0, the Liouville fractional integrals of order β, D−β− f and D−β+ f
are defined, respectively, by

D−β− f(t) :=

∫ t

−∞

(t− s)β−1

Γ(β)
f(s)ds, t ∈ R, (2.1)

and

D−β+ f(t) :=

∫ ∞
t

(s− t)β−1

Γ(β)
f(s)ds, t ∈ R. (2.2)

A sufficient condition for that the fractional integrals (2.1) and (2.2) exist is
that f(t) = O(|t|−β−ε) for ε > 0 and t→∞. Integrable functions satisfying this
property are sometimes referred to as functions of Liouville class, see [36].

The Caputo left and right-sided fractional derivatives, corresponding to those
in (2.1) and (2.2) are defined, respectively, by

Dβ
−f(t) := D

−(n−β)
−

dn

dtn
f(t) =

∫ t

−∞

(t− s)n−β−1

Γ(n− β)
f (n)(s)ds (2.3)

and

Dβ
+f(t) := (−1)nD

−(n−β)
+

dn

dtn
f(t) = (−1)n

∫ ∞
t

(s− t)n−β−1

Γ(n− β)
f (n)(s)ds, (2.4)

where t ∈ R, f ∈ Cn(R;X) and n = dβe. Here dβe denotes the the smallest
integer greater than or equal to β. More details of Caputo fractional calculus
can be found in [31, Section 2.4] and [14].

We notice that the Caputo fractional calculus can also be applied to functions
not belonging to the Liouville class (see [36, p. 237]). For example, if g and h

are measurable functions on R such that D−β± g exists and h = D−β± g a.e., then

we set Dβ
±h = g.

It is known that Dβ+γ
± = Dβ

±(Dγ
±) for any β, γ ∈ R, where D0

± = Id denotes

the identity operator and (−1)nDn
+ = Dn

− = dn

dtn holds with n ∈ N. See [36].

In what follows, we refer to the Caputo left-sided fractional derivative, Dβ
−f,

as the Caputo fractional derivative of order β > 0 of f and we write Dβf :=
Dβ
−f. For example, for the function eλt we have

D−β− eλt = λ−βeλt and Dβeλt = λβeλt, Reλ ≥ 0.

For β > 0, let Cα,β(R, X) be the Banach space of all u ∈ Cn(R, X), n = dβe,
such that Dβu exists and belongs to Cα(R, X) equipped with the norm

‖u‖Cα,β = ‖Dβu‖Cα +

n∑
j=1

‖Dβ−ju(0)‖.

We denote by Ff the Fourier transform of f, that is

(Ff)(s) := f̃(s) :=

∫
R
e−istf(t)dt,
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for s ∈ R and f ∈ L1(R;X).
Let Ω ⊂ R be an open set. By C∞c (Ω) we denote the space of all C∞−functions

in Ω having compact support in Ω.

Definition 2.1. Let M : R \ {0} → B(X,Y ) be continuous. We say that M is
a Ċα−multiplier if there exists a mapping L : Ċα(R;X)→ Ċα(R;Y ) such that∫

R
(Lf)(s)(Fφ)(s)ds =

∫
R

(F(φ ·M))(s)f(s)ds (2.5)

for all f ∈ Cα(R;X) and all φ ∈ C∞c (R \ {0}).

Here (F(φ ·M))(s) =
∫
R e
−istφ(t)M(t)dt ∈ B(X,Y ). Observe that the right-

hand side of (2.5) does not depend on the representative of ḟ since∫
R

(F(φM)(s))(s)ds = 2π(φM)(0) = 0.

Therefore, if L exists, then it is well defined. Moreover, left-hand side of (2.5)
determines the function Lf ∈ Cα(R;X) uniquely up to some constant (by [4,
Lemma 5.1]). Moreover, if (2.5) holds, then L : Ċα(R;X)→ Ċα(R;Y ) is linear
and continuous (see [4, Definition 5.2]) and if f ∈ Cα(R;X) is bounded, then
Lf is bounded as well (see [4, Remark 6.3]).

The following multiplier theorem is due to Arendt, Batty and Bu [4, Theorem
5.3].

Theorem 2.2. Let M ∈ C2(R \ {0},B(X,Y )) be such that

sup
t 6=0
‖M(t)‖+ sup

t6=0
‖tM ′(t)‖+ sup

t6=0
‖t2M ′′(t)‖ <∞. (2.6)

Then, M is a Ċα−multiplier.

Remark 2.3.

Recall that a Banach space X has the Fourier type p, with 1 ≤ p ≤ 2, if the
Fourier transform defines a bounded linear operator from Lp(R;X) to Lq(R;X),
where 1/p+ 1/q = 1. As examples, Lp(Ω), with 1 ≤ p ≤ 2, has Fourier type p;
the Banach space X has the Fourier type 2 if and only if X is isomorphic to a
Hilbert space; X has Fourier type p if and only if X∗ has Fourier type p. Every
Banach space has Fourier type 1. A Banach space X is say to be B−convex if it
has Fourier type p, for some p > 1. Every uniformly convex space is B−convex.

If X is B−convex, in particular if X is a UMD space, then the Theorem
2.2 holds if the condition (2.6) is replaced by the weaker condition

sup
t 6=0
‖M(t)‖+ sup

t6=0
‖tM ′(t)‖ <∞, (2.7)

where M ∈ C1(R \ {0},B(X,Y )), see [4, Remark 5.5].
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Let 0 < α < 1. We denote by L1(R+, t
αdt) the set of all a ∈ L1

loc(R+) such
that ∫ ∞

0

|a(t)|tαdt <∞. (2.8)

Observe that as consequence such a is always in L1(R+).
Given v ∈ Cα(R;X) (0 < α < 1) and a ∈ L1(R+, t

αdt), we write

(a∗̇v)(t) :=

∫ t

−∞
a(t− s)v(s)ds =

∫ ∞
0

a(s)v(t− s)ds. (2.9)

From (2.8) the above integral is well defined. Moreover, it follows from the
definition that

if v ∈ Cα(R;X) then a∗̇v ∈ Cα(R;X) and ‖a∗̇v‖α ≤ ‖a‖1‖v‖α. (2.10)

The Laplace transform of a function f ∈ L1
loc(R+;X) is denoted by

f̂(λ) =

∫ ∞
0

e−λtf(t)dt, Reλ > ω,

whenever the integral is absolutely convergent for Reλ > ω. The relation be-
tween the Laplace transform of f ∈ L1(R;X), f(t) = 0 for t < 0, and its Fourier
transform is

F(f)(s) = f̂(is), s ∈ R.

For f ∈ L1
loc(R;X) of subexponential growth, that is∫ ∞

−∞
e−ε|t|‖f(t)‖dt <∞, for each ε > 0,

we denote by f̂(λ) for the Carleman transform of f :

f̂(λ) =


∫∞

0
e−λtf(t)dt, Reλ > 0,

−
∫ 0

−∞ e−λtf(t)dt, Reλ < 0.

Observe that we use the same symbol for the Carleman and Laplace transform
but, this will not lead to confusion.

When f ∈ L1(R;X) is of subexponential growth, we have by [8, Chapter 4],

lim
σ→0+

(f̂(σ + iρ)− f̂(−σ + iρ)) = f̃(ρ), ρ ∈ R. (2.11)

If a ∈ L1(R+), we will always identify a with its extension on R by letting
a(t) = 0 for t < 0. In such way, when a ∈ L1(R+), the Fourier transform ã(ρ)
makes sense for all ρ ∈ R. Moreover, by (2.11) we have

lim
σ→0+

â(σ + iρ) = ã(ρ)
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and â(−σ + iρ) = 0 for all σ > 0 and ρ ∈ R by definition.
In what follows, we always assume that ã(η) 6= −1, for all η ∈ R, and we use

the following notation:

aη := ã(η), η ∈ R.

Now, we recall the notion of regular kernels (see [40, p. 69]).

Definition 2.4. Let a ∈ L1
loc(R+) be of subexponential growth and k ∈ N. a(t)

is called k-regular if there is a constant c > 0 such that

|λn[â(λ)](n)| ≤ c|â(λ)|, for all Re(λ) > 0, 0 ≤ n ≤ k.

For the reader’s convenience, we summarize here from [40, Lemma 8.1] some
properties of 1-regular kernels.

Lemma 2.5. Suppose that b ∈ L1
loc(R+) is of sub-exponential growth and 1-

regular. Then
(i) b̂(iρ) := limλ→iρ b̂(λ) exists for each ρ 6= 0;

(ii) b̂(λ) 6= 0 for each Re(λ) ≥ 0, λ 6= 0;

(iii) b̂(i·) ∈W 1,∞
loc (R \ {0});

(iv) |ρ[b̂(iρ)]′| ≤ c|b̂(iρ)| for a.a. ρ ∈ R.

By L1(R, (1+|t|)−kdt;X) we denote the space of all functions f ∈ L1
loc(R;X)

such that
∫
R ‖f(t)‖(1 + |t|)−kdt < ∞ for some k ∈ N0 := N ∪ {0}. Note that

L1(R;X) ⊆ L1(R, (1 + |t|)−kdt;X) for all k ∈ N0. See [8, Section 4.8].
Observe that if f ∈ Cα(R;X) then ‖f(t)‖ ≤ c(1+|t|α) for a suitable constant

c. Therefore, f ∈ L1(R, (1 + |t|)−kdt;X) for some k ∈ N0.
Let f ∈ L1(R, (1 + |t|)−kdt;X), where k ∈ N0. We define Ff as a linear

mapping from C∞c (R \ {0}) into X by

〈ϕ,Ff〉 =

∫
R
f(t)(Fϕ)(t)dt, ϕ ∈ C∞c (R \ {0}).

The next lemma follows from [8, Theorems 4.8.1 and 4.8.2].

Lemma 2.6. Let f ∈ L1(R, (1+ |t|)−kdt;X), where k ∈ N0. Then f is constant
if and only if 〈ϕ,Ff〉 =

∫
R f(s)(Fϕ)(s)ds = 0 for all ϕ ∈ C∞c (R \ {0}).

3. A characterization

In this section, we characterize the Cα-well posedness of the following frac-
tional differential equation

Dβu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t), t ∈ R, (3.1)

where A : D(A) ⊆ X → X is a linear and closed operator, a ∈ L1(R+, t
αdt),

β > 0, and f ∈ Cα(R, X), 0 < α < 1. As in [4] we define the map id : R → C
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by id(s) = is. The function idβ is defined by idβ(s) = (is)β , where (is)β =

|s|βe
πβi
2 sgn(s) (here sgn(s) denotes the sign of s).

The Caputo left and right-sided fractional derivatives are adjoint in the sense
of the following lemma.

Lemma 3.1. If Dβf and D−β+ g exist, then∫
R
f(t)g(t)dt =

∫
R
Dβf(t)D−β+ g(t)dt.

Proof. By Fubini’s theorem∫
R
g(t)D−βf(t)dt =

∫
R
g(t)

∫ t

−∞

(t− s)β−1

Γ(β)
f(s)dsdt

=

∫
R
f(s)

∫ ∞
s

(t− s)β−1

Γ(β)
g(t)dtds

=

∫
R
f(s)D−β+ g(s)ds.

Therefore, we obtain∫
R
f(t)g(t)dt =

∫
R
Dβf(t)D−β+ g(t)dt.

The following Lemma is a generalization of [4, Lemma 6.2].

Lemma 3.2. Let 0 < α < 1, u, v ∈ Cα(R;X) and β > 0. Then, the following
assertions are equivalent,

(i) u ∈ Cα,β(R;X) and Dβu− v is constant;
(ii)

∫
R v(s)F(φ)(s)ds =

∫
R u(s)F(idβ · φ)(s)ds, for all φ ∈ C∞c (R \ {0}).

Proof. (i) ⇒ (ii). Let φ ∈ C∞c (R \ {0}). Observe that using Fubini’s Theorem,
we have for t ∈ R,

D−β+ F(idβ · φ)(t) =

∫ ∞
t

(s− t)β−1

Γ(β)
F(idβ · φ)(s)ds

=

∫ ∞
t

∫
R

(s− t)β−1

Γ(β)
e−isr(ir)βφ(r)drds

=

∫
R

∫ ∞
0

vβ−1

Γ(β)
e−i(t+v)r(ir)βφ(r)dvdr

=

∫
R

∫ ∞
0

vβ−1

Γ(β)
e−ivr[e−itr(ir)βφ(r)]dvdr

= (Fφ)(t).
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Hence, for t ∈ R we have D−β+ F(idβ ·φ)(t) = (Fφ)(t) and thus F(idβ ·φ)(t) =

Dβ
+F(φ)(t). Therefore, by hypothesis and Lemmas 2.6, 3.1, we obtain∫
R
v(s)(Fφ)(s)ds =

∫
R
Dβu(s)D−β+ F(idβ · φ)(s)ds =

∫
R
u(s)F(idβ · φ)(s)ds.

(ii)⇒ (i). Let φ ∈ C∞c (R\{0}) and ψ(s) = φ(s)/(is)β . An easy computation

shows that F(φ)(s) = F(idβ · ψ)(s) = Dβ
+(Fψ)(s).

Since u ∈ Cα(R;X) there exists k ∈ N0 such that u ∈ L1(R, (1+|t|)−kdt;X).
Take k0 ∈ N with k0 > k+ β. We claim that Dβu ∈ L1(R, (1 + |t|)−k0dt;X). In
fact, by Fubini’s theorem, by [36, p. 249] and Lemma 3.1 we have∫

R
Dβu(t)(1 + |t|)−k0dt =

Γ(k0 + β)

Γ(k0)

∫
R
Dβu(t)D−β+ (1 + |t|)−(β+k0)dt

=
Γ(k0 + β)

Γ(k0)

∫
R
u(t)(1 + |t|)−(β+k0)dt.

Since u ∈ L1(R, (1 + |t|)−kdt;X) we conclude that∫
R
‖Dβu(t)‖(1 + |t|)−k0dt ≤ Γ(k0 + β)

Γ(k0)

∫
R
‖u(t)‖(1 + |t|)−(β+k0)dt

≤ Γ(k0 + β)

Γ(k0)

∫
R
‖u(t)‖(1 + |t|)−kds <∞.

On the other hand, by the Lemma 3.1 we obtain

〈φ,Fv〉 =

∫
R
v(s)(Fφ)(s)ds =

∫
R
u(s)F(idβ · φ)(s)ds

=

∫
R
u(s)Dβ

+(Fφ)(s)ds

=

∫
R
Dβu(s)(Fφ)(s)ds = 〈φ,FDβu〉.

We conclude that 〈φ,F(v −Dβu)〉 = 0 for all φ ∈ C∞c (R \ {0}), and therefore
v −Dβu is constant by Lemma 2.6.

The following Lemma, is a direct consequence of [30, Lemma 3.2].

Lemma 3.3. Let 0 < α < 1, v ∈ Cα(R; [D(A)]), u ∈ Cα(R;X) and a ∈
L1(R+, t

αdt). The following assertions are equivalent,
(i) a∗̇Av − u is constant;
(ii)

∫
R u(s)(Fφ)(s)ds =

∫
RAv(s)F(asφ)(s)ds, for all φ ∈ C∞c (R \ {0}).

Definition 3.4. We say that the equation (3.1) is Cα-well posed (or has max-
imal regularity) if, for each f ∈ Cα(R;X), there exists a unique function
u ∈ Cα(R; [D(A)])∩Cα,β(R;X), such that the equation (3.1) holds for all t ∈ R.

Remark 3.5.
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Observe that if (3.1) is Cα-well posed, it follows from the closed graph theo-
rem that the map L : Cα(R;X)→ Cα(R; [D(A)])∩Cα,β(R;X), which associates
to f the unique solution u of (3.1) is linear and continuous. Indeed, since A
is a closed operator, we have that the space H := Cα(R; [D(A)]) ∩ Cα,β(R;X)
endowed with the norm

‖u‖H := ‖Dβu‖Cα + ‖Au‖Cα + ‖a∗̇Au‖Cα + ‖u‖Cα

is a Banach space.

Proposition 3.6. Let A : D(A) ⊆ X → X be a closed linear operator defined
on a Banach space X and β > 0. Suppose that the problem (3.1) is Cα-well
posed. Then,

(i)
(iη)β

1 + aη
∈ ρ(A) for all η ∈ R, and

(ii) sup
η∈R

∥∥∥∥∥ (iη)β

1 + aη

(
(iη)β

1 + aη
−A

)−1
∥∥∥∥∥ <∞.

Proof. Let η ∈ R and suppose that

((iη)β − (1 + aη)A)x = 0 (3.2)

where x ∈ D(A). Let u(t) = eiηtx. Then, u is a solution to (3.1) with f ≡ 0. In
fact, Dβu(t) = (iη)βeiηtx (see [36, p. 248]). Moreover, by (3.2) we have

Au(t) + (a∗̇Au)(t) = eiηt(1 + aη)Ax = eiηt(iη)βx = Dβu(t).

Hence, by uniqueness it follows that u ≡ 0, that is, x = 0. We obtain that

((iη)β − (1 + aη)A) = (1 + aη)
(

(iη)β

1+aη
−A

)
is injective. Therefore,

(
(iη)β

1+aη
−A

)
is injective.

In order to show the surjectivity, let y ∈ X. Consider the bounded operator
L : Cα(R;X) → Cα(R; [D(A)]) ∩ Cα,β(R;X) which takes each f ∈ Cα(R;X)
to the unique solution u of equation (3.1). Let η ∈ R, f(t) = eiηty and u = Lf.
Then, for fixed s ∈ R we have that v1(t) := u(t+s) and v2(t) := eiηsu(t) are both
solutions of (3.1) with g(t) = eisηf(t). Hence, v1 = v2, that is, u(t+s) = eisηu(t)
for all s, t ∈ R. Let x = u(0) ∈ D(A). Then, u(t) = eiηtx (i.e. u(t) = u(t+ 0) =
v1(t)) satisfies the equation (3.1). Now, observe that

(a∗̇Au)(t) = eiηtaηAx, t ∈ R.

In particular, (a∗̇Au)(0) = aηAx. Since Dβu(t) = (iη)βeiηtx we have Dβu(0) =
(iη)βx and therefore,

((iη)β − (1 + aη)A)x = Dβu(0)−Au(0)− aηAu(0).

Since u(t) satisfies the equation (3.1) for all t ∈ R, we obtain,

((iη)β − (1 + aη)A)x = Dβu(0)−Au(0)− aηAu(0) = f(0) = y. (3.3)
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Therefore ((iη)β − (1 + aη)A) = (1 + aη)
(

(iη)β

1+aη
−A

)
is surjective. Thus, we

conclude that
(

(iη)β

1+aη
−A

)
is surjective. Since A is a closed operator, we have

(iη)β

1+aη
∈ ρ(A) for all η ∈ R.

By (3.3) we have u(t) = eiηt((iη)β − (1 + aη)A)−1y. Denote eη ⊗ x the
function t 7→ (eη ⊗ x)(t) := eiηtx. Since ‖eη ⊗ x‖α = γα|η|α‖x‖, where γα =
2 supt>0 t

−α sin(t/2) (see [4, Section 3]) we have

γα|η|α‖(iη)β((iη)β − (1 + aη)A)−1y‖ = ‖eη ⊗ (iη)β((iη)β − (1 + aη)A)−1y‖α
= ‖Dβu‖α ≤ ‖Dβu‖Cα ≤ ‖u‖Cα,β
= ‖Lf‖Cα,β ≤ ‖L‖ ‖f‖Cα
≤ ‖L‖(‖f‖α + ‖f(0)‖)
= ‖L‖(γα|η|α + 1)‖y‖.

Therefore, ‖(iη)β((iη)β−(1+aη)A)−1‖ ≤ ‖L‖(1+γ−1
α |η|−α) and in consequence

sup|η|≤1 ‖(iη)β((iη)β − (1 + aη)A)−1‖ <∞. By continuity it follows that

sup
η∈R

∥∥∥∥∥ (iη)β

1 + aη

(
(iη)β

1 + aη
−A

)−1
∥∥∥∥∥ = sup

η∈R
‖(iη)β((iη)β − (1 + aη)A)−1‖ <∞.

The following Theorem is the main result in this paper, which shows that
under an additional hypothesis (the 2-regularity of kernel a) we can prove the
converse of Proposition 3.6.

Theorem 3.7. Let A : D(A) ⊆ X → X be a linear closed operator defined on
Banach space X and a ∈ L1(R+, t

αdt). Suppose that the kernel a is 2-regular
and satisfies supη∈R | 1

1+aη
| <∞. Then, the following assertions are equivalent

(i) The equation (3.1) is Cα-well posed;

(ii)
(iη)β

1 + aη
∈ ρ(A) for all η ∈ R and sup

η∈R

∥∥∥∥∥ (iη)β

1 + aη

(
(iη)β

1 + aη
−A

)−1
∥∥∥∥∥ <∞.

Proof. (ii)⇒ (i). For t ∈ R, define the operator N(t) := ((it)β − (1 + at)A)−1.
Observe that by hypothesis N ∈ C2(R;B(X, [D(A)])). We claim that N is a
Ċα-multiplier. In fact, the identity (it)βN(t) = (1 + at)AN(t) + I and the
hypothesis imply that supt∈R ‖N(t)‖ <∞. On the other hand,

N ′(t) = −N(t)[iβ(it)β−1 − a′tA]N(t), and

N ′′(t) = 2N(t)[iβ(it)β−1 − a′tA]N(t)[iβ(it)β−1 − a′tA]N(t)

−N(t)[i2β(β − 1)(it)β−2 − a′′tA]N(t).

Hence,
‖tN ′(t)‖ ≤ β‖(it)βN(t)‖+ ‖atAN(t)‖,
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‖t2N ′′(t)‖ ≤ 2β2‖N(t)‖ · ‖(it)βN(t)‖2 + 2β‖N(t)(it)βN(t)atAN(t)‖+

2β‖N(t)atAN(t)(it)βN(t)‖+ 2‖N(t)‖ · ‖atN(t)‖2 +

β|β − 1| · ‖N(t)(it)βN(t)‖+ ‖N(t)atAN(t)‖.

From the identity (it)βN(t) = (1+at)AN(t)+I we have that supt∈R ‖atAN(t)‖ <
∞ and from the 2-regularity of a we obtain that

sup
t∈R
‖tN ′(t)‖ <∞ and sup

t∈R
‖t2N ′′(t)‖ <∞.

We conclude from Theorem 2.2 that the operator N is a Ċα-multiplier, with
N ∈ C2(R;B(X, [D(A)])).

Define the operator S ∈ C2(R;B(X)) by S(t) := (idβ ·N)(t). Observe that
by hypothesis supt∈R ‖S(t)‖ <∞. On the other hand,

S′(t) = iβ(it)β−1N(t) + (it)βN ′(t),

S′′(t) = β(β − 1)i2(it)β−2N(t) + 2iβ(it)β−1N ′(t) + (it)βN ′′(t),

and
tS′(t) = β(it)βN(t) + (it)βtN ′(t),

t2S′′(t) = β(β − 1)(it)βN(t) + 2β(it)βtN ′(t) + (it)βt2N ′′(t).

Hence, from hypothesis we conclude supt∈R ‖tS′(t)‖ <∞ and supt∈R ‖t2S′′(t)‖ <
∞. Thus, S is a Ċα-multiplier by Theorem 2.2. A similar computation shows
that T ∈ C2(R;B(X)) defined by T (t) := atAN(t) is a Ċα-multiplier.

Let f ∈ Cα(R;X). Since N,S and T are Ċα-multipliers, there exist u ∈
Cα(R; [D(A)]), v ∈ Cα(R;X) and w ∈ Cα(R;X) such that∫

R
u(s)(Fφ)(s)ds =

∫
R
F(φ ·N)(s)f(s)ds, (3.4)

∫
R
v(s)(Fϕ)(s)ds =

∫
R
F(ϕ · S)(s)f(s)ds, (3.5)∫

R
w(s)(Fψ)(s)ds =

∫
R
F(ψ · T )(s)f(s)ds, (3.6)

for all φ, ϕ, ψ ∈ C∞c (R \ {0}). Letting φ = idβ · ϕ in (3.4) we obtain from (3.5)∫
R
u(s)F(idβ · ϕ)(s)ds =

∫
R
v(s)F(ϕ)(s)ds. (3.7)

By Lemma 3.2 we have u ∈ Cα,β(R;X) and Dβu(t) = v(t) + y0, where y0 ∈ X.
Observe that u(t) ∈ D(A) and F(φ · N)(s)x ∈ D(A) for all x ∈ X, φ ∈

C∞c (R \ {0}). Now, choosing φ = a· · ϕ in (3.4) we have from (3.6)∫
R
Au(s)F(as · ϕ)(s)ds =

∫
R
w(s)F(ϕ)(s)ds. (3.8)

12



From Lemma 3.3 we obtain w(t) = (a∗̇Au)(t) + y1, where y1 ∈ X. Observe that
(3.4), (3.5),(3.6),(3.7) and the identity, (it)βN(t) = (1 + at)AN(t) + I imply

∫
R
v(s)F(ϕ)(s)ds =

∫
R
u(s)F(idβ · ϕ)(s)ds

=

∫
R
F(idβ · ϕ ·N)(s)f(s)ds

=

∫
R
F(ϕ · [I + (1 + as)AN ])(s)f(s)ds

=

∫
R
F(ϕ)(s)f(s)ds+A

∫
R
F(ϕ ·N)(s)f(s)ds+∫

R
F(ϕ · T )(s)f(s)ds

=

∫
R
F(ϕ)(s)f(s)ds+A

∫
R
u(s)F(ϕ)(s)ds+∫

R
w(s)F(ϕ)(s)ds.

Therefore,∫
R
v(s)F(ϕ)(s)ds =

∫
R
F(ϕ)(s)f(s)ds+A

∫
R
u(s)F(ϕ)(s)ds+

∫
R
w(s)F(ϕ)(s)ds.

(3.9)
It follows from (3.9) and Lemma 2.6 that v(t) = f(t) + Au(t) + w(t) + y2

where y2 ∈ X, and therefore Dβu(t) = Au(t) + (a∗̇Au)(t) + f(t) + y, where
y = y0 + y1 + y2. Let u(t) = u(t) + x where x = [(a0 + 1)A]−1y. Note that x

is well defined since (iη)β

1+aη
∈ ρ(A) for all η ∈ R. We observe that u is a solution

of (3.1). In fact, since the fractional derivative (in the sense of Caputo) of a
constant is zero, we have

Dβu(t) = Dβu(t)

= Au(t) + (a∗̇Au)(t) + f(t)− (a0 + 1)Ax+ y

= Au(t) + (a∗̇Au)(t) + f(t).

On the other hand, since u ∈ Cα(R; [D(A)]) ∩ Cα,β(R;X) we conclude that
u ∈ Cα(R; [D(A)])∩Cα,β(R;X) and therefore, u is a solution of equation (3.1).

To see the uniqueness, suppose that

Dβu(t) = Au(t) + (a∗̇Au)(t), t ∈ R. (3.10)

As in [30, Appendix A], for σ > 0, we denote Lσ(u)(ρ) by Lσ(u)(ρ) := û(σ +
iρ)−û(−σ+iρ), where ρ ∈ R. Take Lσ in (3.10). From [30, Proposition A.2.(iv)],
we have

Lσ(Dβu)(ρ) = Aâ(σ + iρ)Lσ(u)(ρ) +GAua (σ, ρ) +ALσ(u)(ρ), (3.11)
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with

lim
σ→0+

∫
R
GAua (σ, ρ)φ(ρ)dρ = 0,

for all φ ∈ S(R), where

GAua (σ, ρ) =

∫ 0

−∞

(∫ ∞
−s

a(τ)e−(σ+iρ)τdτ

)
e−(σ+iρ)sAu(s)ds

+

∫ 0

−∞

(∫ −s
0

a(τ)e(σ−iρ)(s+τ)dτ

)
Au(s)ds

−
∫ 0

−∞

(∫ ∞
0

a(τ)e−(σ+iρ)τdτ

)
e(σ−iρ)sAu(s)ds.

A simply computation, shows that the Carleman transform of fractional deriva-
tive of u satisfies

D̂βu(λ) = λβ û(λ)−
n−1∑
k=0

u(k)(0)λβ−1−k, for Reλ 6= 0, n = dβe.

Hence,

Lσ(Dβu)(ρ) = (σ+ iρ)βLσ(u)(ρ)+cβ(σ, ρ)û(−σ+ iρ)−
n−1∑
k=0

cβ−1−k(σ, ρ)u(k)(0),

where cβ(σ, ρ) = (σ + iρ)β − (−σ + iρ)β . Denote Hβ(σ, ρ) by

Hβ(σ, ρ) := cβ(σ, ρ)û(−σ + iρ)−
n−1∑
k=0

cβ−1−k(σ, ρ)u(k)(0).

From (3.11) we have(
(σ + iρ)β − (1 + â(σ + iρ))A

)
Lσ(u)(ρ) = GAua (σ, ρ)−Hβ(σ, ρ).

Since (iη)β

1+aη
∈ ρ(A) for all η ∈ R, we obtain,

Lσ(u)(ρ) = GAua (σ, ρ)Rρ −Hβ(σ, ρ)Rρ −
(â(iρ)− â(σ + iρ))ARρLσ(u)(ρ)−(
(σ + iρ)β − (iρ)β

)
RρLσ(u)(ρ),

where Rρ denotes Rρ = ((iρ)β − (1 + â(iρ))A)−1.
A similar argument to used in [30, Lemma A.4] shows that

lim
σ→0+

∫
R

(â(iρ)− â(σ + iρ))ARρLσ(u)(ρ)φ(ρ)dρ = 0,

for all φ ∈ S(R). Applying the dominated convergence theorem, we have

lim
σ→0+

∫
R
GAua (σ, ρ)Rρφ(ρ)dρ = 0,
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for all φ ∈ S(R). As in [30, Lemma A.4], we can show that

lim
σ→0+

∫
R
Hβ(σ, ρ)Rρφ(ρ)dρ = 0,

and

lim
σ→0+

∫
R

(
(σ + iρ)β − (iρ)β

)
Rρφ(ρ)dρ = 0,

for all φ ∈ S(R). Therefore, by [30, Proposition A.2.(i)] we obtain

lim
σ→0+

∫
R
Lσ(u)(ρ)φ(ρ)dρ =

∫
R
u(ρ)F(φ)(ρ)dρ = 0,

for all φ ∈ S(R). We conclude from Lemma 2.6 that u is constant, that is,
u(t) = x for all t ∈ R and some x ∈ X. We claim that x = 0. In fact, since that
u is solution of (3.10) we have

0 = Dβu(t) = Ax+ (a∗̇Ax)(t) = (1 + a0)Ax.

Since (iη)β

1+aη
∈ ρ(A) for all η ∈ R, we conclude that x = 0 and therefore u ≡ 0.

Remark 3.8. When the underlying Banach space X is B-convex, we may replace
the assumption that the kernel a is 2-regular in Theorem 3.7, by the weaker
condition that a is an 1-regular kernel. This follows from Remark 2.3 and the
proof of Theorem 3.7.

We notice that, on periodic vector-valued Lebesgue spaces, Lp2π(R;X), 1 <
p < ∞, (where X is a UMD space) and in the scale of periodic Besov spaces
Bsp,q([0, 2π];X), analogous results to Theorem 3.7 have been obtained [11, 28].

Corollary 3.9. In the context of Theorem 3.7, if condition (ii) is fulfilled, we
have that Dβu, a∗̇Au,Au ∈ Cα(R;X). Moreover, there exists a constant C > 0
independent of f ∈ Cα(R;X) such that

‖Dβu‖Cα + ‖a∗̇Au‖Cα + ‖Au‖Cα ≤ C‖f‖Cα . (3.12)

Remark 3.10.

The inequality (3.12) is a consequence of the closed graph theorem and
known as the maximal regularity property for equation (3.1).

We deduce that the operator S defined by:

(Su)(t) := Dβu(t)−Au(t)−
∫ t

−∞
a(t− s)Au(s)ds, t ∈ R,

with domain
D(S) = Cα,β(R;X) ∩ Cα(R; [D(A)]),

is an isomorphism onto. In fact, by Remark 3.5 we have that the space H :=
Cα(R; [D(A)]) ∩ Cα,β(R;X) becomes a Banach space under the norm

‖u‖H := ‖Dβu‖Cα + ‖Au‖Cα + ‖a∗̇Au‖Cα + ‖u‖Cα .
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We remark that such isomorphisms are crucial for the handling of nonlinear
evolution equations (see [2]). Indeed, assume that X is a Banach space and A
satisfy the condition (ii) in Theorem 3.7. Consider the semilinear problem

Dβu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t, u(t)), t ∈ R. (3.13)

Define the Nemytskii’s operator N : H → Cα(R;X) given by N(v)(t) =
f(t, v(t)) and the bounded linear operator

T := S−1 : Cα(R;X)→ H

by T (g) = u where u is the unique solution to linear problem

Dβu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ g(t).

Then, to solve (3.13) we need to show that the operator R : H → H defined by
R = TN has a fixed point. For more details, we refer to Amann [2, 3].

4. Well-posedness of a particular abstract equation

In this section, we consider the following equation

Dβu(t) +Aγu(t) = f(t), t ∈ R, (4.14)

where A is a sectorial operator, 0 < β < 2, and γ > 0. The well-posedness to
this class of equations have been studied in [15] and [29].

We begin with some preliminaries on sectorial operators. We recall that a
closed, densely defined operator A is sectorial of angle δ ∈ (0, π) if σ(A) ⊂ Σδ,
and for every δ′ ∈ (δ, π)

sup
z∈C\Σδ′

‖z(z −A)−1‖ <∞,

where Σδ := {z ∈ C : | arg z| < δ}. For a sectorial operator, define the sectorial
angle ω(A) by

ω(A) := inf{δ ∈ (0, π) : A is sectorial of angle δ}.

For every δ ∈ (0, π) we put

H∞(Σδ) := {f : Σδ → C : ‖f‖∞ <∞} ,

H∞0 (Σδ) :=

{
f ∈ H∞(Σδ) : ∃ε > 0 such that sup

z∈Σδ

|f(z)|
∣∣∣∣1 + z2

z

∣∣∣∣ε <∞} .
If A is a sectorial operator of angle δ ∈ (0, π), then

ΦA(f) := f(A) :=
1

2πi

∫
∂Σδ′

f(z)(z −A)−1dz
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defines a functional calculus from H∞0 (Σδ′) into B(X) for every δ′ > δ. This
functional calculus may be extended in a natural way in order to define the
fractional powers Aε for every ε > 0, see [25, 35].

A sectorial operator A admits a bounded H∞ functional calculus of angle
δ ∈ [ω(A), π) if the functional calculus on H∞0 (Σδ′) extends to a bounded linear
operator on H∞(Σδ′) for every δ′ ∈ (δ, π).

The well-known examples for general classes of closed linear operator with
a bounded H∞ calculus are

1. normal sectorial operators in a Hilbert space;

2. m-accreative operators in a Hilbert space;

3. generators of bounded C0-groups on Lp-spaces;

4. negative generators of positive contraction semigroups on Lp-spaces.

The main result of this section is the following.

Theorem 4.11. Let A be a sectorial operator which admits a bounded H∞

functional calculus of angle ω ∈
(
0, πγ (1 − β

2 )
)

on a Banach space X, where

0 < β < 2. If 0 ∈ ρ(A), then (4.14) Cα-well posed.

Proof. Follow the same lines of [29, Theorem 4.6]. Since ω ∈
(
0, πγ (1 − β

2 )
)
,

there exists δ > ω such that δ < π
γ (1 − β

2 ). For each z ∈ Σδ and t ∈ R, define

F (it, z) := (it)β((it)β + zγ)−1. Note that zγ

(it)β
belongs to the sector Σπβ

2 +δγ ,

where πβ
2 + δγ < π. Hence the distance from the sector Σπβ

2 +δγ , to −1 is always

positive. Therefore, there exists a constant M > 0 independent of t ∈ R and
z ∈ Σδ, such that

|F (it, z)| =
∣∣∣∣ 1

1 + zγ

(it)β

∣∣∣∣ ≤M.

Since A is invertible and admits a H∞ functional calculus, the operators ((it)β+
Aγ)−1 exist for all t ∈ R. Thus, by Theorem 3.7 with a ≡ 0, we have that the
equation (4.14) is Cα-well posed.

We recall that a linear operator A defined on X is called non-negative if
(−∞, 0) ∈ ρ(A) and and there exists M > 0 such that

‖λ(λ−A)−1‖ ≤M, for all λ < 0,

and A is said to be positive if it is non-negative and if, in addition, 0 ∈ ρ(A).
See [35] for further details.

Since each self-adjoint, positive operator admits a bounded H∞ calculus of
angle 0, we obtain the following Corollary.

Corollary 4.12. Let A be a selfadjoint, positive operator defined on a Hilbert
space H and 0 < β < 2. Then for every f ∈ Cα(R;H) there exists a unique
u ∈ Cα(R; [D(A)]) ∩ Cα,β(R;H) such that (4.14) holds for all t ∈ R.
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5. Examples

We conclude the paper, with some applications of the previous results.

Example 5.13.

If A = ρI, where ρ ∈ R \ {0}, and a ≡ 0 in equation (3.1) we obtain

Dβu(t) = ρu(t) + f(t), t ∈ R. (5.15)

Clearly, (iη)β ∈ ρ(A) for all η ∈ R and

sup
η∈R
‖((iη)β − ρI)−1‖ <∞.

Hence, by Theorem 3.7 the equation (5.15) is Cα-well posed. Observe that the
solution to (5.15) is given by

u(t) =

∫ t

−∞
(t− s)β−1Eβ,β(ρ(t− s)β)f(s)ds, t ∈ R, (5.16)

where, for a, b > 0, Ea,b denotes the Mittag-Leffler function

Ea,b(z) =

∞∑
k=0

zk

Γ(b+ ak)
, z ∈ C.

In fact, we notice that the Fourier transform of (5.16) is given by the product
of the Laplace transform of tβ−1Eβ,β(ρtβ) (evaluated in the imaginary axis)
and the Fourier transform of f . Then, an easy computation, shows that it
coincides with the Fourier transform of the given equation (5.15). Observe that
by Corollary 3.9, u and Dβu belong to Cα(R;X).

Example 5.14.

For 0 < β < 1, γ > 0 and 0 ≤ δ ≤ 1 consider the problem Dβu(t, x) = ∆u(t, x) + δ

∫ t

−∞
e−γ(t−s)∆u(s, x)ds+ f(t, x), t ∈ R,

u = 0 in R× ∂Ω,
(5.17)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω. This class
of fractional diffusion equation has been introduced in physics by Nigmatullin
[37] to describe diffusion in special types of porous media. Clearly, the kernel a

is 2-regular (see [40, Proposition 3.3]), aη = ã(η) = δ
iη+γ and (iη)β

1+aη
∈ ρ(A) for

all η ∈ R. Let αη = γδ
γ2+η2 and βη = −ηδ

γ2+η2 the real and imaginary part of aη,

respectively. We recall that, if we take X = H−1(Ω), then by [24, p. 74], there
exists a constant c > 0 such that

‖(zI −∆)−1‖ ≤ c

1 + |z|
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whenever Rez ≥ −c(1 + |Imz|). Thus, we have that in X = H−1(Ω), the in-
equality

‖(iη)β((iη)βI − (1 + aη)∆)−1‖ =
|iη|β

|1 + at|

∥∥∥∥∥
(

(iη)β

1 + aη
I −∆

)−1
∥∥∥∥∥ ≤ c (5.18)

holds if

Re

(
(iη)β

1 + aη

)
≥ −c

(
1 +

∣∣∣∣Im( (iη)β

1 + aη

)∣∣∣∣) , (5.19)

for all η ∈ R and where c > 0 is a suitable constant. Since (iη)β = |η|βe
πβi
2 sgn(η)

(where sgn(η) denotes the sign of η) we have that (5.19) is equivalent to

|η|β
[
(1 + αη) cos(dη) + βη sin(dη)

]
≥ −c

(
(1 + αη)2 + β2

η+
|η|β |(1 + αη) sin(dη)− βη cos(dη)|

)
,

(5.20)
where dη = π

2βsgn(η). Since 0 < β < 1 we have that cos(dη) ≥ 0. Now, observe
that if η ≥ 0, then βη ≤ 0 and sin(dη) > 0, therefore βη sin(dη) ≤ 0. Similarly,
βη sin(dη) ≤ 0 for η < 0. Thus, the inequality (5.20) holds, in particular for
c = 1. Hence, in X = H−1(Ω), we obtain from (5.18) and Theorem 3.7 that
the problem (5.17) is Cα well-posed. Moreover, the solution u of (5.17) satisfies
Dβu,∆u ∈ Cα(R;H−1(Ω)). In particular, if δ = 0 we obtain that, the fractional
diffusion equation{

Dβu(t, x) = ∆u(t, x) + f(t, x), (t, x) ∈ R× Ω
u = 0 in R× ∂Ω,

is Cα-well posed.

Example 5.15.

Consider the problem Dβu(x, t) =
∂2u

∂x2
(x, t) + f(x, t)

u(0, t) = u(π, t) = 0,
(5.21)

with x ∈ [0, π], t ∈ R and β > 0. Let X = L2[0, π] and define A := ∂2

∂x2 , with
domain D(A) = {g ∈ H2[0, π] : g(0) = g(π) = 0}. It is well known that A
generates an analytic C0- semigroup T (t) on X and σ(A) = {−n2 : n ∈ N}.

If β = 2, then (iη)β 6∈ ρ(A) for all η ∈ R and therefore, by Theorem 3.7 the
problem (5.21) is not Cα-well posed.
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Math., 87, Birkhäuser Verlag, 1993.

[41] L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-
regularity, Math. Ann. 319, (2001) 735-758.

22


