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Abstract. We characterize existence and uniqueness of solutions of an abstract differ-
ential equation in Hölder spaces.

1. Introduction

Let A and M be two closed linear operators defined on a Banach space X with domains
D(A) and D(M), respectively. In this paper, we study the existence, uniqueness and
maximal regularity of solutions for the following Sobolev (or degenerate) type differential
equation

(1.1)
d

dt
(Mu(t)) = Au(t) + f(t), t ∈ R,

where f ∈ Cα(R;X), 0 < α < 1, and the domains of A andM satisfyD(A)∩D(M) ̸= {0}.
A large number of partial differential equations arising in physics and applied sciences

can be expressed by the model (1.1). For example, if A = ∆ is the Laplacian and M = m
is the multiplication operator by a function m(x), then the model (1.1) describes the
infiltration of water in unsaturated porous media, in which saturation might occur. See
[9] and [22] for more details.

A detailed study of linear abstract Sobolev (or degenerate) type differential equations
(1.1), has been described in the monographs by Favini and Yagi [14] and by Sviridyuk
and Fedorov [25]. See moreover [19].

Existence and uniqueness of Hölder continuous solutions for equations in the form of
(1.1) have been extensively studied in the literature. See [11, 12, 13, 14, 15, 16, 25] and
the references therein. The obtained results give sufficient conditions for the existence
and uniqueness of Hölder solutions to equation (1.1), but leave as an open problem to
characterize the well-posedness (or maximal regularity) in terms of hypothesis in the
modified resolvent operator (λM − A)−1 of the operators M and A. We notice that, the
problem of characterize the well-posedness (or maximal regularity) of abstract equations
on Hölder spaces have been studied intensively in the last years. See e.g. [8, 10, 18, 20, 23].
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We notice that with the change of variable v(t) = Mu(t) we reduce the problem (1.1)
to the multivalued differential equation

(1.2) v′(t) ∈ Lv(t) + f(t), t ∈ R,
where L = AM−1 and D(L) = M(D(A)). Then, formally the equation (1.1) reduces to
the equation of first order studied in [2]. However, is necessary verify that all the steps
in [2] to the single-valued case are valid for the multivalued case (1.2).

In some previous works, to establish the existence and uniqueness of solutions to equa-
tion (1.1) some assumptions on operators A and M are considered:

i) D(A) ⊂ D(M) and A admits a continuous inverse operator A−1 [11, 12],
ii) D(A) ⊂ D(M) and M has the bounded inverse [14],
iii) D(M) ⊂ D(A) and M has the compact inverse [4, 5].

However, these conditions on operators A and M are restrictive. On the other hand,
Arendt, Batty and Bu [2], using operator-valued Fourier multiplier theorems, have derived
spectral characterizations of well-posedness of the equation (1.1) on Hölder spaces in the
case when M = I, is the identity operator. This connection motivates the question of
whether it is possible to obtain a similar characterization to that given in [21] in the
periodic case, for the equation (1.1) in the case of the class of Hölder spaces Cα(R;X),
0 < α < 1.

In this paper, we study existence and uniqueness solutions to equation (1.1) in the
Hölder spaces Cα(R;X) (0 < α < 1), without assuming M has bounded (or compact)
inverse as well without any assumption on the relation between D(A) and D(M).

The paper is organized as follows. Section 2 collects the preliminaries and some results
about the operator-valued Fourier multipliers in Hölder spaces. Section 3 is devoted to
the main result, where the well-posedness of equation (1.1) and some consequences are
studied. We remark that in these results, there is not conditions in commutativity of A
with M, or in the existence of bounded inverse of A or M. In Section 4, some examples
are examined.

2. Preliminaries

Let X and Y be Banach spaces. We denote by B(X,Y ) be the space of all bounded
linear operators from X to Y . If X = Y , we write simply B(X). Let 0 < α < 1. We
denote by Cα(R;X) the space of all X-valued functions f on R, such that

||f ||α = sup
t̸=s

||f(t)− f(s)||
|t− s|α

< ∞.

If we define ||f ||Cα := ||f ||α+ ||f(0)||, then Cα(R;X) is a Banach space under the norm
|| · ||Cα .

The kernel of the seminorm || · ||α on Cα(R;X) is the space of all constant functions
and the corresponding quotient space Ċα(R;X) is a Banach space in the induced norm.
We identify a function f ∈ Cα(R;X) with its equivalence class

ḟ := {g ∈ Cα(R;X) : f − g ≡ constant}.
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In this way, Ċα(R;X) may be identified with the space of all f ∈ Cα(R;X) such that
f(0) = 0. See [2, Section 5].

We also consider in this paper, the Banach space Cα+1(R;X), which consists of all
u ∈ C1(R;X) such that u′ ∈ Cα(R;X) with the norm

||u||Cα+1 = ||u′||Cα + ||u(0)||.
We denote by Ff, the Fourier transform of f, that is

(Ff)(s) :=

∫
R
e−istf(t)dt,

for s ∈ R and f ∈ L1(R;X).

We use the symbol f̂(λ) for the Carleman transform of f :

f̂(λ) =


∫∞
0

e−λtf(t), Reλ > 0,

−
∫ 0

−∞ e−λtf(t), Reλ < 0,

where f ∈ L1
loc(R;X) is of subexponential growth, by this we mean∫ ∞

−∞
e−ϵ|t|||f(t)||dt < ∞, for each ϵ > 0.

Let Ω ⊂ R be an open set. By C∞
c (Ω) we denote the space of all C∞−functions in Ω

having compact support in Ω.

Definition 2.1. Let N : R \ {0} → B(X,Y ) be continuous. We say that N is a
Ċα−multiplier if there exists a mapping L : Ċα(R;X) → Ċα(R;Y ) such that

(2.1)

∫
R
(Lf)(s)(Fϕ)(s)ds =

∫
R
(F(ϕ ·N))(s)f(s)ds

for all f ∈ Cα(R;X) and all ϕ ∈ C∞
c (R \ {0}).

Here (F(ϕ · N))(s) =
∫
R e

−istϕ(t)N(t)dt ∈ B(X,Y ). Observe that the right-hand side

of (2.1) does not depend on the representative of ḟ since∫
R
(F(ϕN)(s))(s)ds = 2π(ϕN)(0) = 0.

Therefore, if L exists, then it is well defined. Moreover, left-hand side of (2.1) determines
the function Lf ∈ Cα(R;X) uniquely up to some constant (by [2, Lemma 5.1]). Moreover,
if (2.1) holds, then L : Ċα(R;X) → Ċα(R;Y ) is linear and continuous (see [2, Definition
5.2]) and if f ∈ Cα(R;X) is bounded, then Lf is bounded as well (see [2, Remark 6.3]).

The following multiplier theorem is due to Arendt, Batty and Bu [2, Theorem 5.3].

Theorem 2.2. [2] Let N ∈ C2(R \ {0};B(X,Y )) be such that

(2.2) sup
t ̸=0

||N(t)||+ sup
t̸=0

||tN ′(t)||+ sup
t̸=0

||t2N ′′(t)|| < ∞.

Then, N is a Ċα−multiplier.
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Example 2.3. Let X be an Banach space and 0 < α < 1. Define N(t) = I for t ≥ 0 and
N(t) = 0 for t < 0. It follows from Theorem 2.2 that N is a Ċα-multiplier. The associated
operator on Ċα(R;X) is called the Riesz projection.

Example 2.4. Let X be an Banach space and 0 < α < 1. Define N(t) = (−i signt)I for
t ∈ R. Then N is a Ċα-multiplier by Theorem 2.2. The associated operator on Ċα(R;X)
is called the Hilbert transform.

Recall that a Banach space X has the Fourier type p, with 1 ≤ p ≤ 2, if the Fourier
transform defines a bounded linear operator from Lp(R;X) to Lq(R;X), where 1/p+1/q =
1. As examples, the Lp(Ω), with 1 ≤ p ≤ 2 has Fourier type p; the Banach space X has
the Fourier type 2 if and only if X is isomorphic to a Hilbert space; X has Fourier type p
if and only if X∗ has Fourier type p. Every Banach space has Fourier type 1. A Banach
space X is said to be B−convex if it has Fourier type p, for some p > 1. Every uniformly
convex space is B−convex. For more details of B-convex spaces, see for instance [17].

Remark 2.5.

If X is B−convex, in particular if X is a UMD space, then the Theorem 2.2 holds if
the condition (2.2) is replaced by the weaker condition

(2.3) sup
t ̸=0

||N(t)||+ sup
t̸=0

||tN ′(t)|| < ∞,

where N ∈ C1(R \ {0};B(X,Y )), see [2, Remark 5.5].
We conclude this section with two Lemmas.

Lemma 2.6. [2] Let f ∈ Cα(R;X). Then f is constant if and only if
∫
R f(s)(Fφ)(s)ds =

0 for all φ ∈ C∞
c (R \ {0}).

Define id : R → C by id(s) = is.

Lemma 2.7. [2] Let 0 < α < 1, u, v ∈ Cα(R;X). Then, the following assertions are
equivalent,

(i) u ∈ Cα+1(R;X) and u′ − v is constant;
(ii)

∫
R v(s)F(ϕ)(s)ds =

∫
R u(s)F(id · ϕ)(s)ds, for all ϕ ∈ C∞

c (R \ {0}).

3. A characterization

Let X a Banach space. In this section, we consider the degenerate differential equation

(3.1)
d

dt
(Mu(t)) = Au(t) + f(t), t ∈ R,

where A : D(A) ⊆ X → X and M : D(M) ⊆ X → X are closed linear operators defined
on X, with D(A) ∩D(M) ̸= {0}, and f ∈ Cα(R;X), 0 < α < 1.

The M-modified resolvent set of A, ρM(A), is defined by

ρM(A) := {λ ∈ C : (λM − A) : D(A) ∩D(M) → X

is invertible and (λM − A)−1 ∈ B(X, [D(A) ∩D(M)])}.
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We define the set

H1,α(R; [D(M)]) = {u ∈ Cα(R; [D(M)]) : ∃v ∈ Cα(R;X)

such that v = (Mu)′}.

We establish the definition of maximal regularity or well-posedness of problem (3.1) as
follows.

Definition 3.1. We say that the equation (3.1) is Cα-well posed if, for each f ∈ Cα(R;X),
there exists a unique function u ∈ Cα(R; [D(A)∩D(M)])∩H1,α(R, [D(M)]) such that the
equation (3.1) holds for all t ∈ R.

Remark 3.2.

Observe that if (3.1) is Cα-well posed, it follows from the closed graph theorem that
the map L : Cα(R;X) → Cα(R; [D(A) ∩D(M)]) ∩H1,α(R; [D(M)]) which associates to
f the unique solution u of (3.1) is linear and continuous. Indeed, since A,M are closed
operators, we have that the spaceH := Cα(R; [D(A)∩D(M)])∩H1,α(R; [D(M)]) endowed
with the norm

||u||H := ||(Mu)′||Cα + ||Au||Cα + ||u||Cα

is a Banach space.
We begin with the following result.

Proposition 3.3. Let A : D(A) ⊆ X → X, M : D(M) ⊆ X → X closed linear operators
defined on a Banach space X satisfying D(A) ∩ D(M) ̸= {0}. Suppose that the problem
(3.1) is Cα-well posed. Then,

(i) iR ⊂ ρM(A),
(ii) sup

η∈R
||iηM(iηM − A)−1|| < ∞.

Proof. Let η ∈ R and suppose that (iηM − A)x = 0 where x ∈ D(A) ∩ D(M). Let
u(t) = eiηtx. Then, u is a solution to (3.1) with f ≡ 0. Hence, by uniqueness it follows
that u ≡ 0, that is, x = 0. We conclude that (iηM −A) is injective. In order to show the
surjectivity, let y ∈ X. Let L : Cα(R;X) → Cα(R; [D(A) ∩ D(M)]) ∩ H1,α(R; [D(M)])
be the bounded linear operator which takes each f ∈ Cα(R;X) to the unique solution u
of equation (3.1). Let η ∈ R, f(t) = eiηty and u = Lf. Then, for fixed s ∈ R we have
that v1(t) := u(t+ s) and v2(t) := eiηsu(t) are both solutions of (3.1) with g(t) = eiηsf(t).
Hence, v1 = v2, that is, u(t+ s) = eisηu(t) for all s, t ∈ R. Let x = u(0) ∈ D(A) ∩D(M).
Then, u(t) = eiηtx satisfies the equation (3.1) for all t ∈ R, in particular, for t = 0, we
obtain,

(3.2) (iηM − A)x = iηMu(0)− Au(0) = (Mu)′(0)− Au(0) = f(0) = y.

Therefore (iηM − A) is surjective. By (3.2) we have u(t) = eiηt(iηM − A)−1y. Denote
by eη ⊗ x the function t → (eη ⊗ x)(t) := eiηtx. Since ||eη ⊗ x||α = γα|η|α||x||, where
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γα = 2 supt>0 t
−α sin(t/2) (see [2, Section 3]), we have

γα|η|α||(iηM − A)−1y|| = ||eη ⊗ (iηM − A)−1y||α = ||u||α
≤ ||u||H ≤ ||L|| ||f ||Cα

= ||L||(γα|η|α + 1)||y||.
Hence,

||(iηM − A)−1y|| ≤ ||L||
(
1 + γ−1

α |η|−α
)
||y||.

Thus (iηM − A)−1 is a bounded operator for every η ∈ R \ {0}. For η = 0, observe that
by the closed graph theorem A−1 is an isomorphism of X onto D(A) ∩D(M) (seen as a
Banach space with the graph norm). We conclude that iη ∈ ρM(A) for all η ∈ R.

On the other hand, since by the closed graph theorem, L : Cα(R;X) → Cα(R; [D(A)∩
D(M)])∩H1,α(R; [D(M)]) is a bounded operator, we have that for all f ∈ Cα(R;X) there
exist u ∈ Cα(R; [D(A) ∩D(M)]) ∩H1,α(R; [D(M)]) and a constant C > 0 (independent
of f) such that

(3.3) ||(Mu)′||Cα + ||Au||Cα ≤ C||f ||Cα .

For f(t) = eiηty where y ∈ X and η ∈ R, the solution u of (3.1) is given by u(t) =
eiηt(iηM − A)−1y. Therefore

||(Mu)′||α = ||eη ⊗ iηM(iηM − A)−1y||α
= γα|η|α||iηM(iηM − A)−1y||.

Since (Mu)′ ∈ Cα(R;X) and ||(Mu)′||α ≤ C||f ||Cα = C(γα|η|α + 1)||y|| we have

γα|η|α||iηM(iηM − A)−1y|| ≤ C(γα|η|α + 1)||y||.(3.4)

From (3.4) we have that for ϵ > 0,

sup
|η|>ϵ

||iηM(iηM − A)−1|| ≤ C sup
|η|>ϵ

(1 + γ−1
α |η|−α) < ∞.

By continuity it follows that supη∈R ||iηM(iηM − A)−1|| < ∞.

The following is the main results in this paper. It corresponds to an extension of [2,
Theorem 6.1] in case M = I.

Theorem 3.4. Let A : D(A) ⊆ X → X, M : D(M) ⊆ X → X closed linear opera-
tors defined on a Banach space X satisfying D(A) ∩ D(M) ̸= {0}. Then, the following
assertions are equivalent

(i) The equation (3.1) is Cα-well posed;
(ii) iR ⊂ ρM(A) and sup

η∈R
||iηM(iηM − A)−1|| < ∞.

Proof. (ii) ⇒ (i). For t ∈ R, define the operator N(t) := (itM − A)−1. Observe that
by hypothesis N ∈ C2(R;B(X, [D(A) ∩ D(M)])). We claim that N is a Ċα-multiplier.
In fact, since 0 ∈ ρM(A), we have that A−1 is bounded (seen as an operator from X to
[D(A)∩D(M)]). The resolvent identity itMN(t)−I = AN(t) implies A−1(itMN(t)−I) =
N(t) and therefore, by hypothesis we have that supt∈R ||N(t)|| < ∞. On the other hand,

N ′(t) = −iN(t)MN(t),
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N ′′(t) = −2N(t)MN(t)MN(t).

Hence,

tN ′(t) = −itN(t)MN(t),

t2N ′′(t) = −2N(t)tMN(t)tMN(t).

From the hypothesis and the above identities, we have

sup
t∈R

||tN ′(t)|| < ∞ and sup
t∈R

||t2N ′′(t)|| < ∞.

We conclude from Theorem 2.2 that N is a Ċα-multiplier, with N ∈ C2(R;B(X, [D(A)∩
D(M)])).

Define S(t) := (id · MN)(t), where id(t) = it. Observe that by hypothesis S ∈
C2(R;B(X)). Moreover,

S ′(t) = iMN(t) + tMN(t)MN(t),

S ′′(t) = 2MN(t)MN(t)− 2itMN(t)MN(t)MN(t).

and

tS ′(t) = itMN(t) + tMN(t)tMN(t),

t2S ′′(t) = 2tMN(t)tMN(t)− 2itMN(t)tMN(t)tMN(t).

Hence, from hypothesis supt∈R ||S(t)|| < ∞, supt∈R ||tS ′(t)|| < ∞ and supt∈R ||t2S ′′(t)|| <
∞. We conclude that S is a Ċα-multiplier by Theorem 2.2.

Let f ∈ Cα(R;X). Since N and S are Ċα-multipliers, there exist u ∈ Cα(R; [D(A) ∩
D(M)]), and v ∈ Cα(R;X) such that

(3.5)

∫
R
u(s)(Fϕ)(s)ds =

∫
R
F(ϕ ·N)(s)f(s)ds,

(3.6)

∫
R
v(s)(Fφ)(s)ds =

∫
R
F(φ · S)(s)f(s)ds,

for all ϕ, φ ∈ C∞
c (R \ {0}). Let ϕ = id · φ. From (3.5) we have

(3.7)

∫
R
u(s)F(id · φ)(s)ds =

∫
R
F(id · φ ·N)(s)f(s)ds.

Observe that u(t) ∈ D(A) ∩ D(M) and F(ϕ · N)(s)x ∈ D(A) ∩ D(M) for all x ∈ X,
ϕ ∈ C∞

c (R \ {0}). Using the fact that M is closed with D(A) ∩ D(M) ̸= {0}, we have
from (3.5), (3.6) and (3.7) that

(3.8)

∫
R
Mu(s)F(id · φ)(s)ds = A

∫
R
u(s)F(φ)(s)ds+

∫
R
F(φ · I)(s)f(s)ds.

Moreover, from (3.6) and (3.7) we have

(3.9)

∫
R
Mu(s)F(id · φ)(s)ds =

∫
R
F(φ · S)(s)f(s)ds =

∫
R
v(s)(Fφ)(s)ds.
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Since u ∈ Cα(R; [D(A) ∩ D(M)]) and D(A) ∩ D(M) ̸= {0}, we have that Mu ∈
Cα(R;X). It follows from (3.9) and Lemma 2.7 that (Mu)′ = v + y1 where y1 ∈ X.
Clearly v + y1 ∈ Cα(R;X), and therefore u ∈ H1,α(R; [D(M)]). From (3.8) and (3.9) we
have ∫

R
v(s)F(φ)(s)ds = A

∫
R
u(s)F(φ)(s)ds+

∫
R
F(φ · I)(s)f(s)ds.

From Lemma 2.6 we obtain v = Au+f+y2 where y2 ∈ X. Therefore (Mu)′ = Au+f+y3
with y3 = y1 + y2. Let u(t) = u(t) + x where x = A−1y3. Note that x is well defined
since iR ⊂ ρM(A). Since u ∈ Cα(R; [D(A) ∩ D(M)]) ∩ H1,α(R; [D(M)]) we have u ∈
Cα(R; [D(A) ∩ D(M)]) ∩ H1,α(R; [D(M)]). An easy computation shows that u satisfies
the equation (3.1). To see the uniqueness, suppose that

(3.10) (Mu)′(t) = Au(t), t ∈ R,

where u ∈ Cα(R; [D(A)∩D(M)]) with u ∈ H1,α(R; [D(M)]). SinceM is a closed operator,

we have M̂u′(λ) = λMû(λ) −Mu(0) (Reλ ̸= 0). Since û(λ) ∈ D(A) ∩ D(M) ̸= {0} we
obtain, (λM − A)û(λ) = Mu(0) for all λ ∈ C \ iR. Since iR ⊂ ρM(A) it follows that the
Carleman spectrum spC(u) of u is empty. Therefore u ≡ 0 (see [3, Theorem 4.8.2]). We
conclude that the problem (3.1) is Cα-well posed.

(i) ⇒ (ii). Follows from Proposition 3.3.

Corollary 3.5. In the context of Theorem 3.4, if condition (ii) is fulfilled, we have
(Mu)′, Au ∈ Cα(R;X). Moreover, there exists a constant C > 0 independent of f ∈
Cα(R;X) such that

(3.11) ||(Mu)′||Cα(R;X) + ||Au||Cα(R;X) ≤ C||f ||Cα(R;X).

Remark 3.6.

The inequality (3.11) is a consequence of the Closed Graph Theorem and known as the
maximal regularity property for equation (3.1). We deduce that the operator S defined
by:

(Su)(t) = (Mu)′(t)− Au(t)

with domain

D(S) = H1,α(R; [D(M)]) ∩ Cα(R; [D(A) ∩D(M)]),

is an isomorphism onto. In fact, by Remark 3.2 we have that the spaceH := Cα(R; [D(A)∩
D(M)]) ∩H1,α(R; [D(M)]) becomes a Banach space under the norm

||u||H := ||u||Cα(R;X) + ||(Mu)′||Cα(R;X) + ||Au||Cα(R;X).

We remark that such isomorphisms are crucial for the handling of nonlinear evolution
equations (see [1]). Indeed, assume that X is a Banach space and A,M satisfy the
condition (ii) in Theorem 3.4. Consider the semilinear problem

(3.12) (Mu)′(t) = Au(t) + f(t, u(t)), t ∈ R.
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Define the Nemytskii’s superposition operator N : H → Cα(R;X) given by N(v)(t) =
f(t, v(t)) and the bounded linear operator

T := S−1 : Cα(R;X) → H

by T (g) = u where u is the unique solution to linear problem

(Mu)′(t) = Au(t) + g(t), t ≥ 0.

Then, to solve (3.12) we need to show that the operator R : H → H defined by R = TN
has a fixed point. For more details, we refer to H. Amann [1], H. Brill [7] and A. Rutkas
and L. Vlasenko [24].

4. Examples

Example 4.7.

Let us consider the problem

∂(m(x)u)

∂t
−∆u = f(t, x), in R× Ω(4.13)

u = 0, in R× ∂Ω,(4.14)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, m(x) ≥ 0 is a given
measurable bounded function on Ω and f is a function on R× Ω.

Let M be the multiplication operator by m. If we take X = H−1(Ω) then by [6, p.38]
(see also references therein), we have that there exists a constant c > 0 such that

||M(zM −∆)−1|| ≤ c

1 + |z|
,

whenever Rez ≥ −c(1+ |Im(z)|). In particular, in the imaginary axis we have ||M(itM −
∆)−1|| ≤ c

1+|t| , for all t ∈ R. Therefore, we conclude by Theorem 3.4 that the equation

(4.13) is Cα-well posed. Thus, given f ∈ Cα(R × Ω;X) there exists a unique solution u
to problem (4.13) which satisfy (m(x)u)′,∆u ∈ Cα(R× Ω;X).

Example 4.8.

Let P be a densely defined positive selfadjoint operator defined on a Hilbert space X
with P ≥ δ > 0. Let M = P − ε with ε ≤ δ, and let A = −

∑k
i=0 aiP

i with ai ≥ 0, ak > 0,
and k ≥ 2 is an integer. From [14, p. 73] we have that there exists a constant c > 0 such
that

||M(zM − A)−1|| ≤ c

1 + |z|
,

whenever Rez ≥ −c(1+ |Im(z)|). Thus, in the imaginary axis we have ||M(itM−A)−1|| ≤
c

1+|t| , for all t ∈ R. Hence, in this conditions the equation (3.1) is Cα-well posed.

Example 4.9.
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For (x, t) ∈ Ω× R where Ω = (0, 1), consider the problem

∂

∂t

(
1− ∂2

∂x2

)
u(x, t) = − ∂4

∂x4
u(x, t) + f(x, t)(4.15)

u = 0, in ∂Ω× R.(4.16)

In the space X = L2(Ω), let P = − ∂2

∂x2 , with domain D(P ) = H2(Ω) ∩ H1
0 (Ω). Observe

that P is a positive selfadjoint operator in X. If M = P + I, and A = −P 2, then the
equation (4.15) can be written in the form of (3.1). By Example 4.8, the equation (4.15)
is Cα-well posed.

Example 4.10.

Consider the problem

∂

∂t

( ∂2

∂x2
+ 1

)
u(t, x) = −a

∂2

∂x2
u(t, x)− ku(t, x) + f(t, x), t ∈ R, x ∈ [0, π](4.17)

u(t, 0) = u(t, π) =
∂2

∂x2
u(t, 0) =

∂2

∂x2
u(t, π) = 0, t ∈ R(4.18)

where a is positive constant and −2a < k < 4a. In X = C0([0, π]) = {u ∈ C([0, π]) :

u(0) = u(π)} take K the realization of ∂2

∂x2 with domain

D(K) = {u ∈ C2([0, π]) : u(0) = u(π) =
∂2

∂x2
u(0) =

∂2

∂x2
u(π) = 0}.

If M = K + I, and A = aM + (k − a)I, then the equation (4.17) can be written in the
form of (3.1). By [6, p.39] or [14] we have, as in the above example:

||M(itM − A)−1|| ≤ c

1 + |t|
for all t ∈ R. Therefore, by Theorem 3.4 the equation (4.17) is Cα-well posed, that is, for
all f ∈ Cα(R × [0, π];C0([0, π])) there exists a unique solution u of (4.17) with maximal

regularity ∂2u
∂x2 ∈ Cα(R× [0, π];C0([0, π])).
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