HOLDER CONTINUOUS SOLUTIONS FOR SOBOLEV TYPE ¨ DIFFERENTIAL EQUATIONS

RODRIGO PONCE

Abstract. We characterize existence and uniqueness of solutions of an abstract differential equation in Hölder spaces.

1. Introduction

Let *A* and *M* be two closed linear operators defined on a Banach space *X* with domains $D(A)$ and $D(M)$, respectively. In this paper, we study the existence, uniqueness and maximal regularity of solutions for the following Sobolev (or degenerate) type differential equation

(1.1)
$$
\frac{d}{dt}(Mu(t)) = Au(t) + f(t), \quad t \in \mathbb{R},
$$

where $f \in C^{\alpha}(\mathbb{R}; X)$, $0 < \alpha < 1$, and the domains of *A* and *M* satisfy $D(A) \cap D(M) \neq \{0\}$ *.*

A large number of partial differential equations arising in physics and applied sciences can be expressed by the model (1.1). For example, if $A = \Delta$ is the Laplacian and $M = m$ is the multiplication operator by a function $m(x)$, then the model (1.1) describes the infiltration of water in unsaturated porous media, in which saturation might occur. See [9] and [22] for more details.

A detailed study of linear abstract Sobolev (or degenerate) type differential equations (1.1), has been described in the monographs by Favini and Yagi [14] and by Sviridyuk and Fedorov [25]. See moreover [19].

Existence and uniqueness of Hölder continuous solutions for equations in the form of (1.1) have been extensively studied in the literature. See [11, 12, 13, 14, 15, 16, 25] and the references therein. The obtained results give sufficient conditions for the existence and uniqueness of Hölder solutions to equation (1.1) , but leave as an open problem to *characterize* the well-posedness (or maximal regularity) in terms of hypothesis in the *modified resolvent operator* $(\lambda M - A)^{-1}$ of the operators *M* and *A*. We notice that, the problem of characterize the well-posedness (or maximal regularity) of abstract equations on Hölder spaces have been studied intensively in the last years. See e.g. $[8, 10, 18, 20, 23]$.

²⁰⁰⁰ *Mathematics Subject Classification.* 34G10, 34K30, 35K65.

Key words and phrases. Degenerate parabolic equations; Hölder spaces; Maximal regularity; Operatorvalued Fourier multipliers; Sobolev type equations.

2 RODRIGO PONCE

We notice that with the change of variable $v(t) = M u(t)$ we reduce the problem (1.1) to the multivalued differential equation

$$
(1.2) \t v'(t) \in Lv(t) + f(t), \quad t \in \mathbb{R},
$$

where $L = AM^{-1}$ and $D(L) = M(D(A))$. Then, formally the equation (1.1) reduces to the equation of first order studied in [2]. However, is necessary verify that all the steps in [2] to the single-valued case are valid for the multivalued case (1.2).

In some previous works, to establish the existence and uniqueness of solutions to equation (1.1) some assumptions on operators *A* and *M* are considered:

- i) $D(A) \subset D(M)$ and *A* admits a continuous inverse operator A^{-1} [11, 12],
- ii) $D(A) \subset D(M)$ and *M* has the bounded inverse [14],
- iii) $D(M) \subset D(A)$ and *M* has the compact inverse [4, 5].

However, these conditions on operators *A* and *M* are restrictive. On the other hand, Arendt, Batty and Bu [2], using operator-valued Fourier multiplier theorems, have derived spectral characterizations of well-posedness of the equation (1.1) on Hölder spaces in the case when $M = I$, is the identity operator. This connection motivates the question of whether it is possible to obtain a similar characterization to that given in [21] in the periodic case, for the equation (1.1) in the case of the class of Hölder spaces $C^{\alpha}(\mathbb{R};X)$, $0 < \alpha < 1$.

In this paper, we study existence and uniqueness solutions to equation (1.1) in the Hölder spaces $C^{\alpha}(\mathbb{R};X)$ (0 < α < 1), without assuming M has bounded (or compact) inverse as well without any assumption on the relation between $D(A)$ and $D(M)$.

The paper is organized as follows. Section 2 collects the preliminaries and some results about the operator-valued Fourier multipliers in Hölder spaces. Section 3 is devoted to the main result, where the well-posedness of equation (1.1) and some consequences are studied. We remark that in these results, there is not conditions in commutativity of *A* with *M*, or in the existence of bounded inverse of *A* or *M*. In Section 4, some examples are examined.

2. Preliminaries

Let *X* and *Y* be Banach spaces. We denote by $\mathcal{B}(X, Y)$ be the space of all bounded linear operators from *X* to *Y*. If $X = Y$, we write simply $\mathcal{B}(X)$. Let $0 < \alpha < 1$. We denote by $C^{\alpha}(\mathbb{R};X)$ the space of all X-valued functions f on \mathbb{R} , such that

$$
||f||_{\alpha} = \sup_{t \neq s} \frac{||f(t) - f(s)||}{|t - s|^{\alpha}} < \infty.
$$

If we define $||f||_{C^{\alpha}} := ||f||_{\alpha} + ||f(0)||$, then $C^{\alpha}(\mathbb{R}; X)$ is a Banach space under the norm $|| \cdot ||_{C^{\alpha}}$.

The kernel of the seminorm $|| \cdot ||_{\alpha}$ on $C^{\alpha}(\mathbb{R};X)$ is the space of all constant functions and the corresponding quotient space $\dot{C}^{\alpha}(\mathbb{R};X)$ is a Banach space in the induced norm. We identify a function $f \in C^{\alpha}(\mathbb{R}; X)$ with its equivalence class

$$
\dot{f} := \{ g \in C^{\alpha}(\mathbb{R}; X) : f - g \equiv \text{ constant} \}.
$$

In this way, $\dot{C}^{\alpha}(\mathbb{R};X)$ may be identified with the space of all $f \in C^{\alpha}(\mathbb{R};X)$ such that $f(0) = 0$. See [2, Section 5].

We also consider in this paper, the Banach space $C^{\alpha+1}(\mathbb{R};X)$, which consists of all $u \in C^1(\mathbb{R}; X)$ such that $u' \in C^{\alpha}(\mathbb{R}; X)$ with the norm

$$
||u||_{C^{\alpha+1}} = ||u'||_{C^{\alpha}} + ||u(0)||.
$$

We denote by *Ff,* the Fourier transform of *f,* that is

$$
(\mathcal{F}f)(s) := \int_{\mathbb{R}} e^{-ist} f(t) dt,
$$

for $s \in \mathbb{R}$ and $f \in L^1(\mathbb{R}; X)$.

We use the symbol $\hat{f}(\lambda)$ for the *Carleman transform of f*:

$$
\hat{f}(\lambda) = \begin{cases}\n\int_0^\infty e^{-\lambda t} f(t), \text{Re}\lambda > 0, \\
-\int_{-\infty}^0 e^{-\lambda t} f(t), \text{Re}\lambda < 0,\n\end{cases}
$$

where $f \in L^1_{loc}(\mathbb{R}; X)$ is of *subexponential growth*, by this we mean

$$
\int_{-\infty}^{\infty} e^{-\epsilon|t|} ||f(t)|| dt < \infty, \quad \text{ for each } \epsilon > 0.
$$

Let $\Omega \subset \mathbb{R}$ be an open set. By $C_c^{\infty}(\Omega)$ we denote the space of all C^{∞} *-functions* in Ω having compact support in Ω*.*

Definition 2.1. Let $N : \mathbb{R} \setminus \{0\} \rightarrow \mathcal{B}(X, Y)$ be continuous. We say that N is a \dot{C}^{α} *–multiplier if there exists a mapping* $L : \dot{C}^{\alpha}(\mathbb{R};X) \to \dot{C}^{\alpha}(\mathbb{R};Y)$ such that

(2.1)
$$
\int_{\mathbb{R}} (Lf)(s)(\mathcal{F}\phi)(s)ds = \int_{\mathbb{R}} (\mathcal{F}(\phi \cdot N))(s)f(s)ds
$$

for all $f \in C^{\alpha}(\mathbb{R}; X)$ *and all* $\phi \in C_c^{\infty}(\mathbb{R} \setminus \{0\})$.

Here $(\mathcal{F}(\phi \cdot N))(s) = \int_{\mathbb{R}} e^{-ist} \phi(t) N(t) dt \in \mathcal{B}(X, Y)$. Observe that the right-hand side of (2.1) does not depend on the representative of \hat{f} since

$$
\int_{\mathbb{R}} (\mathcal{F}(\phi N)(s))(s)ds = 2\pi(\phi N)(0) = 0.
$$

Therefore, if *L* exists, then it is well defined. Moreover, left-hand side of (2.1) determines the function $Lf \in C^{\alpha}(\mathbb{R}; X)$ uniquely up to some constant (by [2, Lemma 5.1]). Moreover, if (2.1) holds, then $L: C^{\alpha}(\mathbb{R};X) \to C^{\alpha}(\mathbb{R};Y)$ is linear and continuous (see [2, Definition 5.2]) and if $f \in C^{\alpha}(\mathbb{R};X)$ is bounded, then Lf is bounded as well (see [2, Remark 6.3]).

The following multiplier theorem is due to Arendt, Batty and Bu [2, Theorem 5.3].

Theorem 2.2. [2] *Let* $N \in C^2(\mathbb{R} \setminus \{0\}; \mathcal{B}(X, Y))$ *be such that*

(2.2)
$$
\sup_{t \neq 0} ||N(t)|| + \sup_{t \neq 0} ||tN'(t)|| + \sup_{t \neq 0} ||t^2 N''(t)|| < \infty.
$$

Then, N is a \dot{C}^{α} *-multiplier.*

Example 2.3*. Let X be an Banach space and* $0 < \alpha < 1$ *. Define* $N(t) = I$ *for* $t > 0$ *and* $N(t) = 0$ *for* $t < 0$. It follows from Theorem 2.2 that N is a \dot{C}^{α} -multiplier. The associated *operator on* $\dot{C}^{\alpha}(\mathbb{R};X)$ *is called the* Riesz projection.

Example 2.4*. Let X be an Banach space and* $0 < \alpha < 1$ *. Define* $N(t) = (-i \text{ sign } t)I$ *for* $t \in \mathbb{R}$ *. Then N is a* \dot{C}^{α} -multiplier by Theorem 2.2. The associated operator on $\dot{C}^{\alpha}(\mathbb{R};X)$ *is called the* Hilbert transform.

Recall that a Banach space *X* has the *Fourier type p*, with $1 \leq p \leq 2$, if the Fourier transform defines a bounded linear operator from $L^p(\mathbb{R};X)$ to $L^q(\mathbb{R};X)$, where $1/p+1/q$ 1. As examples, the $L^p(\Omega)$, with $1 \leq p \leq 2$ has Fourier type *p*; the Banach space *X* has the Fourier type 2 if and only if *X* is isomorphic to a Hilbert space; *X* has Fourier type *p* if and only if *X[∗]* has Fourier type *p.* Every Banach space has Fourier type 1. A Banach space *X* is said to be *B−*convex if it has Fourier type *p*, for some $p > 1$. Every uniformly convex space is *B−*convex. For more details of *B*-convex spaces, see for instance [17].

Remark 2.5*.*

If *X* is *B−*convex, in particular if *X* is a *UMD* space, then the Theorem 2.2 holds if the condition (2.2) is replaced by the weaker condition

(2.3)
$$
\sup_{t \neq 0} ||N(t)|| + \sup_{t \neq 0} ||tN'(t)|| < \infty,
$$

where $N \in C^1(\mathbb{R} \setminus \{0\}; \mathcal{B}(X, Y)),$ see [2, Remark 5.5].

We conclude this section with two Lemmas.

Lemma 2.6. [2] *Let* $f \in C^{\alpha}(\mathbb{R}; X)$ *. Then f is constant if and only if* $\int_{\mathbb{R}} f(s)(\mathcal{F}\varphi)(s)ds =$ 0 *for all* $\varphi \in C_c^{\infty}(\mathbb{R} \setminus \{0\})$.

Define id : $\mathbb{R} \to \mathbb{C}$ by $\mathrm{id}(s) = is$.

Lemma 2.7. [2] *Let* $0 < \alpha < 1$, $u, v \in C^{\alpha}(\mathbb{R}; X)$. *Then, the following assertions are equivalent,*

(*i*) $u \in C^{\alpha+1}(\mathbb{R};X)$ and $u'-v$ is constant; (*ii*) $\int_{\mathbb{R}} v(s) \mathcal{F}(\phi)(s) ds = \int_{\mathbb{R}} u(s) \mathcal{F}(\mathrm{id} \cdot \phi)(s) ds$, for all $\phi \in C_c^{\infty}(\mathbb{R} \setminus \{0\})$.

3. A CHARACTERIZATION

Let X a Banach space. In this section, we consider the degenerate differential equation

(3.1)
$$
\frac{d}{dt}(Mu(t)) = Au(t) + f(t), \qquad t \in \mathbb{R},
$$

where $A: D(A) \subseteq X \longrightarrow X$ and $M: D(M) \subseteq X \longrightarrow X$ are closed linear operators defined on *X*, with $D(A) \cap D(M) \neq \{0\}$, and $f \in C^{\alpha}(\mathbb{R}; X)$, $0 < \alpha < 1$.

The *M*-modified resolvent set of A, $\rho_M(A)$, is defined by

$$
\rho_M(A) := \{ \lambda \in \mathbb{C} : (\lambda M - A) : D(A) \cap D(M) \to X
$$

is invertible and $(\lambda M - A)^{-1} \in \mathcal{B}(X, [D(A) \cap D(M)]) \}.$

We define the set

$$
H^{1,\alpha}(\mathbb{R};[D(M)]) = \{ u \in C^{\alpha}(\mathbb{R};[D(M)]): \exists v \in C^{\alpha}(\mathbb{R};X)
$$

such that $v = (Mu)'\}.$

We establish the definition of *maximal regularity* or *well-posedness* of problem (3.1) as follows.

Definition 3.1. We say that the equation (3.1) is C^{α} -well posed if, for each $f \in C^{\alpha}(\mathbb{R}; X)$, *there exists a unique function* $u \in C^{\alpha}(\mathbb{R};[D(A) \cap D(M)]) \cap H^{1,\alpha}(\mathbb{R},[D(M)])$ *such that the equation (3.1) holds for all* $t \in \mathbb{R}$ *.*

Remark 3.2*.*

Observe that if (3.1) is C^{α} -well posed, it follows from the closed graph theorem that the map $L: C^{\alpha}(\mathbb{R}; X) \to C^{\alpha}(\mathbb{R}; [D(A) \cap D(M)]) \cap H^{1,\alpha}(\mathbb{R}; [D(M)])$ which associates to *f* the unique solution *u* of (3.1) is linear and continuous. Indeed, since *A, M* are closed operators, we have that the space $H := C^{\alpha}(\mathbb{R}; [D(A) \cap D(M)]) \cap H^{1,\alpha}(\mathbb{R}; [D(M)])$ endowed with the norm

$$
||u||_H := ||(Mu)'||_{C^{\alpha}} + ||Au||_{C^{\alpha}} + ||u||_{C^{\alpha}}
$$

is a Banach space.

We begin with the following result.

Proposition 3.3. Let $A: D(A) \subseteq X \rightarrow X$, $M: D(M) \subseteq X \rightarrow X$ closed linear operators *defined on a Banach space X satisfying* $D(A) \cap D(M) \neq \{0\}$ *. Suppose that the problem* (3.1) *is* C^{α} -well posed. Then,

 (i) $i\mathbb{R} \subset \rho_M(A)$, (iii) sup $\frac{||i\eta M(i\eta M - A)^{-1}||}{||i\eta M(i\eta M - A)^{-1}||} < \infty$. *η∈*R

Proof. Let $\eta \in \mathbb{R}$ and suppose that $(i\eta M - A)x = 0$ where $x \in D(A) \cap D(M)$. Let $u(t) = e^{i\eta t}x$. Then, *u* is a solution to (3.1) with $f \equiv 0$. Hence, by uniqueness it follows that $u \equiv 0$, that is, $x = 0$. We conclude that $(i\eta M - A)$ is injective. In order to show the surjectivity, let $y \in X$. Let $L : C^{\alpha}(\mathbb{R};X) \to C^{\alpha}(\mathbb{R};[D(A) \cap D(M)]) \cap H^{1,\alpha}(\mathbb{R};[D(M)])$ be the bounded linear operator which takes each $f \in C^{\alpha}(\mathbb{R};X)$ to the unique solution *u* of equation (3.1). Let $\eta \in \mathbb{R}$, $f(t) = e^{i\eta t}y$ and $u = Lf$. Then, for fixed $s \in \mathbb{R}$ we have that $v_1(t) := u(t+s)$ and $v_2(t) := e^{i\eta s}u(t)$ are both solutions of (3.1) with $g(t) = e^{i\eta s}f(t)$. Hence, $v_1 = v_2$, that is, $u(t + s) = e^{is\eta}u(t)$ for all $s, t \in \mathbb{R}$. Let $x = u(0) \in D(A) \cap D(M)$. Then, $u(t) = e^{i\eta t}x$ satisfies the equation (3.1) for all $t \in \mathbb{R}$, in particular, for $t = 0$, we obtain,

(3.2)
$$
(i\eta M - A)x = i\eta M u(0) - Au(0) = (Mu)'(0) - Au(0) = f(0) = y.
$$

Therefore $(i\eta M - A)$ is surjective. By (3.2) we have $u(t) = e^{i\eta t} (i\eta M - A)^{-1} y$. Denote by $e_{\eta} \otimes x$ the function $t \to (e_{\eta} \otimes x)(t) := e^{i\eta t}x$. Since $||e_{\eta} \otimes x||_{\alpha} = \gamma_{\alpha} |\eta|^{\alpha} ||x||$, where

$$
\gamma_{\alpha} = 2 \sup_{t>0} t^{-\alpha} \sin(t/2)
$$
 (see [2, Section 3]), we have
\n
$$
\gamma_{\alpha} |\eta|^{\alpha} ||(i\eta M - A)^{-1} y|| = ||e_{\eta} \otimes (i\eta M - A)^{-1} y||_{\alpha} = ||u||_{\alpha}
$$
\n
$$
\leq ||u||_{H} \leq ||L|| ||f||_{C^{\alpha}}
$$
\n
$$
= ||L||(\gamma_{\alpha} |\eta|^{\alpha} + 1) ||y||.
$$

Hence,

$$
||(i\eta M - A)^{-1}y|| \le ||L|| (1 + \gamma_{\alpha}^{-1}|\eta|^{-\alpha}) ||y||.
$$

Thus $(i\eta M - A)^{-1}$ is a bounded operator for every $\eta \in \mathbb{R} \setminus \{0\}$. For $\eta = 0$, observe that by the closed graph theorem A^{-1} is an isomorphism of *X* onto $D(A) \cap D(M)$ (seen as a Banach space with the graph norm). We conclude that $i\eta \in \rho_M(A)$ for all $\eta \in \mathbb{R}$.

On the other hand, since by the closed graph theorem, $L: C^{\alpha}(\mathbb{R}; X) \to C^{\alpha}(\mathbb{R}; [D(A) \cap$ *D*(*M*)])∩*H*^{1,α}(ℝ; [*D*(*M*)]) is a bounded operator, we have that for all $f \in C^{\alpha}(\mathbb{R}; X)$ there exist $u \in C^{\alpha}(\mathbb{R};[D(A) \cap D(M)]) \cap H^{1,\alpha}(\mathbb{R};[D(M)])$ and a constant $C > 0$ (independent of *f*) such that

(3.3)
$$
||(Mu)'||_{C^{\alpha}} + ||Au||_{C^{\alpha}} \leq C||f||_{C^{\alpha}}.
$$

For $f(t) = e^{i\eta t}y$ where $y \in X$ and $\eta \in \mathbb{R}$, the solution *u* of (3.1) is given by $u(t) =$ $e^{i\eta t}(i\eta M - A)^{-1}y$. Therefore

$$
||(Mu)'||_{\alpha} = ||e_{\eta} \otimes i\eta M(i\eta M - A)^{-1}y||_{\alpha}
$$

= $\gamma_{\alpha}|\eta|^{\alpha}||i\eta M(i\eta M - A)^{-1}y||.$

Since $(Mu)' \in C^{\alpha}(\mathbb{R};X)$ and $||(Mu)'||_{\alpha} \leq C||f||_{C^{\alpha}} = C(\gamma_{\alpha}|\eta|^{\alpha}+1)||y||$ we have (3.4) $\gamma_{\alpha} |\eta|^{\alpha} ||i\eta M(i\eta M - A)^{-1}y|| \leq C(\gamma_{\alpha} |\eta|^{\alpha} + 1) ||y||.$

From (3.4) we have that for $\epsilon > 0$,

$$
\sup_{|\eta|>\epsilon}||i\eta M(i\eta M - A)^{-1}|| \leq C \sup_{|\eta|>\epsilon} (1 + \gamma_{\alpha}^{-1}|\eta|^{-\alpha}) < \infty.
$$

By continuity it follows that $\sup_{\eta \in \mathbb{R}} ||i\eta M(i\eta M - A)^{-1}|| < \infty$.

The following is the main results in this paper. It corresponds to an extension of [2, Theorem 6.1] in case $M = I$.

Theorem 3.4. *Let* $A : D(A) \subseteq X \rightarrow X$, $M : D(M) \subseteq X \rightarrow X$ closed linear opera*tors defined on a Banach space X satisfying* $D(A) \cap D(M) \neq \{0\}$ *. Then, the following assertions are equivalent*

- (*i*) The equation (3.1) is C^{α} -well posed;
- (iii) $i\mathbb{R} \subset \rho_M(A)$ and $\sup ||i\eta M(i\eta M A)^{-1}|| < \infty$. *η∈*R

Proof. (*ii*) \Rightarrow (*i*)*.* For $t \in \mathbb{R}$, define the operator $N(t) := (itM - A)^{-1}$. Observe that by hypothesis $N \in C^2(\mathbb{R}; \mathcal{B}(X, [D(A) \cap D(M)]))$. We claim that *N* is a \dot{C}^{α} -multiplier. In fact, since $0 \in \rho_M(A)$, we have that A^{-1} is bounded (seen as an operator from X to $[D(A) \cap D(M)]$. The resolvent identity $itMN(t) - I = AN(t)$ implies $A^{-1}(itMN(t) - I)$ *N*(*t*) and therefore, by hypothesis we have that $\sup_{t \in \mathbb{R}} ||N(t)|| < \infty$. On the other hand,

$$
N'(t) = -iN(t)MN(t),
$$

$$
N''(t) = -2N(t)MN(t)MN(t).
$$

Hence,

$$
tN'(t) = -itN(t)MN(t),
$$

$$
t2N''(t) = -2N(t)tMN(t)tMN(t).
$$

From the hypothesis and the above identities, we have

$$
\sup_{t\in\mathbb{R}}||tN'(t)|| < \infty \quad \text{ and } \quad \sup_{t\in\mathbb{R}}||t^2N''(t)|| < \infty.
$$

We conclude from Theorem 2.2 that *N* is a \dot{C}^{α} -multiplier, with $N \in C^2(\mathbb{R}; \mathcal{B}(X, [D(A) \cap$ *D*(*M*)]))*.*

Define $S(t) := (\mathrm{id} \cdot MN)(t)$, where $\mathrm{id}(t) = it$. Observe that by hypothesis $S \in$ $C^2(\mathbb{R}; \mathcal{B}(X))$. Moreover,

$$
S'(t) = iMN(t) + tMN(t)MN(t),
$$

$$
S''(t) = 2MN(t)MN(t) - 2itMN(t)MN(t)MN(t).
$$

and

$$
tS'(t) = itMN(t) + tMN(t)tMN(t),
$$

$$
t2S''(t) = 2tMN(t)tMN(t) - 2itMN(t)tMN(t)LMN(t).
$$

Hence, from hypothesis $\sup_{t\in\mathbb{R}}||S(t)|| < \infty$, $\sup_{t\in\mathbb{R}}||tS'(t)|| < \infty$ and $\sup_{t\in\mathbb{R}}||t^2S''(t)|| <$ ∞ *.* We conclude that *S* is a \dot{C}^{α} -multiplier by Theorem 2.2.

Let $f \in C^{\alpha}(\mathbb{R}; X)$. Since *N* and *S* are \dot{C}^{α} -multipliers, there exist $\overline{u} \in C^{\alpha}(\mathbb{R}; [D(A) \cap$ $D(M)$, and $v \in C^{\alpha}(\mathbb{R}; X)$ such that

(3.5)
$$
\int_{\mathbb{R}} \overline{u}(s)(\mathcal{F}\phi)(s)ds = \int_{\mathbb{R}} \mathcal{F}(\phi \cdot N)(s)f(s)ds,
$$

(3.6)
$$
\int_{\mathbb{R}} v(s)(\mathcal{F}\varphi)(s)ds = \int_{\mathbb{R}} \mathcal{F}(\varphi \cdot S)(s)f(s)ds,
$$

for all $\phi, \varphi \in C_c^{\infty}(\mathbb{R} \setminus \{0\})$. Let $\phi = id \cdot \varphi$. From (3.5) we have

(3.7)
$$
\int_{\mathbb{R}} \overline{u}(s) \mathcal{F}(\mathrm{id} \cdot \varphi)(s) ds = \int_{\mathbb{R}} \mathcal{F}(\mathrm{id} \cdot \varphi \cdot N)(s) f(s) ds.
$$

Observe that $\overline{u}(t) \in D(A) \cap D(M)$ and $\mathcal{F}(\phi \cdot N)(s)x \in D(A) \cap D(M)$ for all $x \in X$, $\phi \in C_c^{\infty}(\mathbb{R} \setminus \{0\})$. Using the fact that *M* is closed with $D(A) \cap D(M) \neq \{0\}$, we have from (3.5), (3.6) and (3.7) that

(3.8)
$$
\int_{\mathbb{R}} M \overline{u}(s) \mathcal{F}(\mathrm{id} \cdot \varphi)(s) ds = A \int_{\mathbb{R}} \overline{u}(s) \mathcal{F}(\varphi)(s) ds + \int_{\mathbb{R}} \mathcal{F}(\varphi \cdot I)(s) f(s) ds.
$$

Moreover, from (3.6) and (3.7) we have

(3.9)
$$
\int_{\mathbb{R}} M \overline{u}(s) \mathcal{F}(\mathrm{id} \cdot \varphi)(s) ds = \int_{\mathbb{R}} \mathcal{F}(\varphi \cdot S)(s) f(s) ds = \int_{\mathbb{R}} v(s) (\mathcal{F}\varphi)(s) ds.
$$

8 RODRIGO PONCE

Since $\overline{u} \in C^{\alpha}(\mathbb{R};[D(A) \cap D(M)])$ and $D(A) \cap D(M) \neq \{0\}$, we have that $M\overline{u} \in$ $C^{\alpha}(\mathbb{R}; X)$. It follows from (3.9) and Lemma 2.7 that $(M\overline{u})' = v + y_1$ where $y_1 \in X$. Clearly $v + y_1 \in C^{\alpha}(\mathbb{R}; X)$, and therefore $\overline{u} \in H^{1,\alpha}(\mathbb{R}; [D(M)])$. From (3.8) and (3.9) we have

$$
\int_{\mathbb{R}} v(s) \mathcal{F}(\varphi)(s) ds = A \int_{\mathbb{R}} \overline{u}(s) \mathcal{F}(\varphi)(s) ds + \int_{\mathbb{R}} \mathcal{F}(\varphi \cdot I)(s) f(s) ds.
$$

From Lemma 2.6 we obtain $v = A\overline{u} + f + y_2$ where $y_2 \in X$. Therefore $(M\overline{u})' = A\overline{u} + f + y_3$ with $y_3 = y_1 + y_2$. Let $u(t) = \overline{u}(t) + x$ where $x = A^{-1}y_3$. Note that x is well defined since $i\mathbb{R} \subset \rho_M(A)$. Since $\overline{u} \in C^{\alpha}(\mathbb{R};[D(A) \cap D(M)]) \cap H^{1,\alpha}(\mathbb{R};[D(M)])$ we have $u \in$ $C^{\alpha}(\mathbb{R};[D(A) \cap D(M)]) \cap H^{1,\alpha}(\mathbb{R};[D(M)])$. An easy computation shows that *u* satisfies the equation (3.1). To see the uniqueness, suppose that

(3.10) (*Mu*) *′* (*t*) = *Au*(*t*)*, t ∈* R*,*

where $u \in C^{\alpha}(\mathbb{R};[D(A)\cap D(M)])$ with $u \in H^{1,\alpha}(\mathbb{R};[D(M)])$. Since M is a closed operator, w bave $M u'(\lambda) = \lambda M \hat{u}(\lambda) - M u(0)$ (Re $\lambda \neq 0$). Since $\hat{u}(\lambda) \in D(A) \cap D(M) \neq \{0\}$ we obtain, $(\lambda M - A)\hat{u}(\lambda) = M u(0)$ for all $\lambda \in \mathbb{C} \setminus i\mathbb{R}$. Since $i\mathbb{R} \subset \rho_M(A)$ it follows that the Carleman spectrum $sp_C(u)$ of *u* is empty. Therefore $u \equiv 0$ (see [3, Theorem 4.8.2]). We conclude that the problem (3.1) is C^{α} -well posed.

 \blacksquare

 $(i) \Rightarrow (ii)$. Follows from Proposition 3.3.

Corollary 3.5. *In the context of Theorem 3.4, if condition (ii) is fulfilled, we have* $(Mu)'$, $Au \in C^{\alpha}(\mathbb{R};X)$. Moreover, there exists a constant $C > 0$ independent of $f \in$ $C^{\alpha}(\mathbb{R};X)$ *such that*

(3.11)
$$
||(Mu)'||_{C^{\alpha}(\mathbb{R};X)} + ||Au||_{C^{\alpha}(\mathbb{R};X)} \leq C||f||_{C^{\alpha}(\mathbb{R};X)}.
$$

Remark 3.6*.*

The inequality (3.11) is a consequence of the Closed Graph Theorem and known as the *maximal regularity property* for equation (3.1). We deduce that the operator *S* defined by:

$$
(Su)(t) = (Mu)'(t) - Au(t)
$$

with domain

$$
D(S) = H^{1,\alpha}(\mathbb{R};[D(M)]) \cap C^{\alpha}(\mathbb{R};[D(A) \cap D(M)]),
$$

is an isomorphism onto. In fact, by Remark 3.2 we have that the space $H := C^{\alpha}(\mathbb{R}; [D(A) \cap$ $D(M)$) \cap *H*^{1, α}(\mathbb{R} ; $[D(M)]$) becomes a Banach space under the norm

$$
||u||_H := ||u||_{C^{\alpha}(\mathbb{R};X)} + ||(Mu)'||_{C^{\alpha}(\mathbb{R};X)} + ||Au||_{C^{\alpha}(\mathbb{R};X)}.
$$

We remark that such isomorphisms are crucial for the handling of nonlinear evolution equations (see [1]). Indeed, assume that *X* is a Banach space and A, M satisfy the condition (*ii*) in Theorem 3.4. Consider the semilinear problem

(3.12)
$$
(Mu)'(t) = Au(t) + f(t, u(t)), \quad t \in \mathbb{R}.
$$

Define the Nemytskii's superposition operator $N: H \to C^{\alpha}(\mathbb{R}; X)$ given by $N(v)(t) =$ $f(t, v(t))$ and the bounded linear operator

$$
T := S^{-1} : C^{\alpha}(\mathbb{R}; X) \to H
$$

by $T(g) = u$ where *u* is the unique solution to linear problem

$$
(Mu)'(t) = Au(t) + g(t), \quad t \ge 0.
$$

Then, to solve (3.12) we need to show that the operator $R : H \to H$ defined by $R = TN$ has a fixed point. For more details, we refer to H. Amann [1], H. Brill [7] and A. Rutkas and L. Vlasenko [24].

4. Examples

Example 4.7*.*

Let us consider the problem

(4.13)
$$
\frac{\partial (m(x)u)}{\partial t} - \Delta u = f(t, x), \text{ in } \mathbb{R} \times \Omega
$$

$$
(4.14) \t\t u = 0, \t\t \text{in } \mathbb{R} \times \partial \Omega,
$$

where Ω is a bounded domain in \mathbb{R}^n with a smooth boundary $\partial\Omega$ *, m(x)* ≥ 0 is a given measurable bounded function on Ω and f is a function on $\mathbb{R} \times \Omega$.

Let *M* be the multiplication operator by *m*. If we take $X = H^{-1}(\Omega)$ then by [6, p.38] (see also references therein), we have that there exists a constant $c > 0$ such that

$$
||M(zM - \Delta)^{-1}|| \le \frac{c}{1 + |z|},
$$

whenever Re $z \geq -c(1 + |\text{Im}(z)|)$. In particular, in the imaginary axis we have $||M(itM - c||)$ Δ ^{*j*-1}|| ≤ $\frac{c}{1+|t|}$, for all $t \in \mathbb{R}$. Therefore, we conclude by Theorem 3.4 that the equation (4.13) is C^{α} -well posed. Thus, given $f \in C^{\alpha}(\mathbb{R} \times \Omega; X)$ there exists a unique solution *u* to problem (4.13) which satisfy $(m(x)u)$ ^{*'*}, $\Delta u \in C^{\alpha}(\mathbb{R} \times \Omega; X)$.

Example 4.8*.*

Let *P* be a densely defined positive selfadjoint operator defined on a Hilbert space *X* with $P \ge \delta > 0$. Let $M = P - \varepsilon$ with $\varepsilon \le \delta$, and let $A = -\sum_{i=0}^{k} a_i P^i$ with $a_i \ge 0$, $a_k > 0$, and $k \geq 2$ is an integer. From [14, p. 73] we have that there exists a constant $c > 0$ such that

$$
||M(zM - A)^{-1}|| \le \frac{c}{1 + |z|},
$$

whenever Re $z \geq -c(1+|\text{Im}(z)|)$. Thus, in the imaginary axis we have $||M(itM-A)^{-1}|| \leq$ *c* $\frac{c}{1+|t|}$, for all $t \in \mathbb{R}$. Hence, in this conditions the equation (3.1) is C^{α} -well posed.

Example 4.9*.*

For $(x, t) \in \Omega \times \mathbb{R}$ where $\Omega = (0, 1)$, consider the problem

(4.15)
$$
\frac{\partial}{\partial t} \left(1 - \frac{\partial^2}{\partial x^2} \right) u(x, t) = -\frac{\partial^4}{\partial x^4} u(x, t) + f(x, t)
$$

$$
(4.16) \t\t u = 0, \text{ in } \partial\Omega \times \mathbb{R}.
$$

In the space $X = L^2(\Omega)$, let $P = -\frac{\partial^2}{\partial x^2}$ $\frac{\partial^2}{\partial x^2}$, with domain $D(P) = H^2(\Omega) \cap H_0^1(\Omega)$. Observe that *P* is a positive selfadjoint operator in *X*. If $M = P + I$, and $A = -P^2$, then the equation (4.15) can be written in the form of (3.1) . By Example 4.8, the equation (4.15) is C^{α} -well posed.

Example 4.10*.*

Consider the problem

$$
(4.17)\frac{\partial}{\partial t}\left(\frac{\partial^2}{\partial x^2} + 1\right)u(t, x) = -a\frac{\partial^2}{\partial x^2}u(t, x) - ku(t, x) + f(t, x), \quad t \in \mathbb{R}, x \in [0, \pi]
$$

$$
(4.18) \qquad u(t, 0) = u(t, \pi) = \frac{\partial^2}{\partial x^2}u(t, 0) = \frac{\partial^2}{\partial x^2}u(t, \pi) = 0, \quad t \in \mathbb{R}
$$

where *a* is positive constant and $-2a < k < 4a$. In $X = C_0([0, \pi]) = \{u \in C([0, \pi]) :$ $u(0) = u(\pi)$ } take *K* the realization of $\frac{\partial^2}{\partial x^2}$ with domain

$$
D(K) = \{u \in C^2([0, \pi]) : u(0) = u(\pi) = \frac{\partial^2}{\partial x^2}u(0) = \frac{\partial^2}{\partial x^2}u(\pi) = 0\}.
$$

If $M = K + I$, and $A = aM + (k - a)I$, then the equation (4.17) can be written in the form of (3.1) . By $[6, p.39]$ or $[14]$ we have, as in the above example:

$$
||M(itM - A)^{-1}|| \le \frac{c}{1 + |t|}
$$

for all $t \in \mathbb{R}$. Therefore, by Theorem 3.4 the equation (4.17) is C^{α} -well posed, that is, for all $f \in C^{\alpha}(\mathbb{R} \times [0, \pi]; C_0([0, \pi]))$ there exists a unique solution *u* of (4.17) with maximal regularity $\frac{\partial^2 u}{\partial x^2} \in C^{\alpha}(\mathbb{R} \times [0, \pi]; C_0([0, \pi]))$.

REFERENCES

- [1] H. Amann, *Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear Theory,* Monographs in Mathematics, vol 89., Birkhäuser, Basel-Boston-Berlin, 1995.
- [2] W. Arendt, C. Batty, S. Bu, *Fourier multipliers for H¨older continuous functions and maximal regularity,* Studia Math. **160** (2004) 23-51.
- [3] W. Arendt, C. Batty, M. Hieber, F. Neubrander, *Vector-Valued Laplace transforms and Cauchy problems*, Monographs in Math., vol. 96, Birkhäuser, Basel, 2001.
- [4] K. Balachandran, E. Anandhi, J. Dauer, *Boundary controllability of Sobolev-type abstract nonlinear integrodifferential systems,* J. Math. Anal. Appl. **277** (2003), 446-464.
- [5] K. Balachandran, S. Kiruthika, J. Trujillo, *On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces,* Comput. Math. Appl. **62** (2011), no. 3, 1157-1165.
- [6] V. Barbu, A. Favini, *Periodic problems for degenerate differential equations,* Rend. Instit. Mat. Univ. Trieste XXVIII (Suppl.) (1997) 29-57.
- [7] H. Brill, *A semilinear Sobolev evolution equation in a Banach space,* J. Differential Equations **24** (1977), no. 3, 412-425.
- [8] S. Bu, *Maximal regularity of second order delay equations in Banach spaces,* Acta Math. Sin. (Engl. Ser.) **25** (2009), 21-28.
- [9] R. W. Carroll, R. E. Showalter, *Singular and degenerate Cauchy problems,* Mathematics in science and engineering, **127**, New York, Academic Press, 1976.
- [10] C. Cuevas, C. Lizama, *Well posedness for a class of flexible structure in Hölder spaces*, Math. Probl. Eng. 2009, Art. ID 358329, 13 pp.
- [11] A. Favaron, A. Favini, *Maximal time regularity for degenerate evolution integro-differential equations,* J. of Evol. Equ., **10** (2010), 377-412.
- [12] A. Favini, A. Lorenzi, *Identification problems for singular integro-differential equations of parabolic type II,* Nonlinear Anal., **56**, (2004), 879-904.
- [13] A. Favini, A. Yagi, *Space and time regularity for degenerate evolution equations.* J. Math. Soc. Japan, **44** (1992), 331-350.
- [14] A. Favini, A. Yagi, *Degenerate differential equations in Banach spaces,* Pure and Applied Math., **215**, Dekker, New York, Basel, Hong-Kong, 1999.
- [15] A. Favini, A. Yagi, *Quasilinear degenerate evolution equations in Banach spaces.* J. Evol. Equ. **4** (2004), 421-449.
- [16] M. Al Horani, A. Favini, *An identification problem for first-order degenerate differential equations*. J. Optim. Theory Appl. **130** (2006), (1), 41-60.
- [17] W. Johnson, J. Lindenstrauss, *Handbook of the Geometry of Banach Spaces, Vol 1,* North-Holland, Amsterdam, 2001.
- [18] V. Keyantuo, C. Lizama, *Hölder continuous solutions for integro-differential equations and maximal regularity,* J. Diff. Equations **230** (2006), 634-660.
- [19] J. Lightbourne III, S. Rankin III, *A partial functional-differential equation of Sobolev type,* J. Math. Anal. Appl. **93** (1983), no. 2, 328-337.
- [20] C. Lizama, V. Poblete, *Maximal regularity of delay equations in Banach spaces,* Studia Math. **175** (1) (2006), 91-102.
- [21] C. Lizama, R. Ponce, *Periodic solutions of degenerate differential equations in vector-valued function spaces,* Studia Math. **202** (1) (2011), 49-63.
- [22] G. Marinoschi, *Functional approach to nonlinear models of water flow in soils,* Math. Model. Theory Appl., **21**, Springer, Dordrecht, 2006.
- [23] V. Poblete, *Maximal regularity of second-order equations with delay*, J. Diff. Equations, **246**, (2009) 261-276.
- [24] A. Rutkas, L. Vlasenko, *Existence, uniqueness and continuous dependence for implicit semilinear functional differential equations,* Nonlinear Analysis **55** (2003) 125-139.
- [25] G. Sviridyuk, V. Fedorov, *Linear Sobolev type equations and degenerate semigroups of operators,* Inverse and Ill-posed Problems Series, VSP, Utrecht, 2003.

UNIVERSIDAD DE TALCA, INSTITUTO DE MATEMÁTICA Y FÍSICA, CASILLA 747, TALCA-CHILE. *E-mail address*: rponce@inst-mat.utalca.cl