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Abstract. We study the existence and uniqueness of bounded solutions for the semilinear
fractional differential equation

Dαu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t, u(t)) t ∈ R,

where A is a closed linear operator defined on a Banach space X, α > 0, a ∈ L1(R+) is a scalar-
valued kernel and f : R × X → X satisfying Lipschitz type conditions. Sufficient conditions
are established for the existence and uniqueness of an almost periodic, almost automorphic and
asymptotically almost periodic solution, among other.

1. Introduction

Fractional differential equations have been used by many researchers to adequately describe
the evolution of a variety of physical and biological processes. Examples include the nonlinear
oscillation of earthquake, electrochemistry, electromagnetism, viscoelasticity and rheology. See,
for instance, [3, 18, 19] and [27] for more details.

In this paper, we consider the following semilinear fractional differential equation with infinite
delay

(1.1) Dαu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t, u(t)), t ∈ R,

where A is a closed linear operator defined on a Banach space X, a ∈ L1(R+) is a scalar-valued
kernel, f belongs to a closed subspace of the space of continuous and bounded functions, and
for α > 0, the fractional derivative is understood in the Weyl’s sense.

Under appropriate assumptions on A and f, we want to prove that (1.1) has a unique mild
solution u which behaves in the same way that f . For example, we want to find conditions
implying that u is almost periodic (resp. automorphic) if f(·, x) is almost periodic (resp. almost
automorphic).

When α = 1 in equation (1.1), we obtain the equation with infinite delay

(1.2) u′(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t, u(t)), t ∈ R.

Equations of this kind arise, for example, in the study of heat flow in materials of fading memory
type as well as some equations of population dynamics or in viscoelasticity. See [35] and [36,
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Chapter III, Section 13] for more details. Existence of almost periodic or almost automorphic
(among other) mild solutions to equation (1.2) has been recently studied in [24, 26].

A characterization of the existence and uniqueness of periodic (strong) solutions to the linear
problem (1.1), that is, when f(t, u(t)) = g(t), on periodic vector-valued Lebesgue spaces and in
the scale of periodic Besov spaces, have been studied in [9] using Fourier multipliers.

When a ≡ 0, sufficient conditions for the existence and uniqueness of mild solutions in the
cases α = 1, α = 2, with f almost periodic or almost automorphic, among other, have been
obtained by several authors in [5, 6, 14, 15, 16, 32] for the case α = 1, and in [5, 21, 34] for
α = 2.

The fractional case, α > 0,

(1.3) Dα
t u(t) = Au(t) + f(t, u(t)), t ∈ R,

where the fractional derivative is taken in the Riemann-Liouville’s sense, have been studied in
several papers. See [2, 4, 11, 13, 30, 37] and the references therein. See moreover [1, Section 3].

In this paper, we study the existence and uniqueness of mild solutions for (1.1) where the input
data f belongs to some of above functions spaces. Concretely, we prove that if f is for example
almost periodic (resp. almost automorphic) and satisfies some Lipschitz type conditions, then
there exists a unique mild solution u of (1.1) which is almost periodic (resp. almost automorphic)
and is given by

(1.4) u(t) =

∫ t

−∞
Sα(t− s)f(s, u(s))ds, t ∈ R,

where {Sα(t)}t≥0 is the α-resolvent family generated by A. It is remarkable that, in the scalar
case, that is A = −ρI, with ρ > 0, some concrete examples of integrable α-resolvent families are
showed. See Examples 4.17 and 4.18 below.

The paper is organized as follows. In the second section, we review recent results about several
intermediate Banach spaces interpolating between periodic and bounded continuous functions.
In Section 3, we study the linear case of equation (1.1), that is, when f(t, u(t)) = g(t) for all
t ∈ R. Assuming that A generates an α-resolvent family we ensure the existence and uniqueness
of mild solutions in each class of function spaces introduced in section 2. Some properties
of the Mittag-Leffler functions are also studied. Section 4 is devoted to the semilinear case.
There, using the previous results on the linear case and the Banach contraction principle we
give sufficient conditions that ensure the existence and uniqueness of (mild) solutions almost
periodic, almost automorphic, among other, for equation (1.1). Some examples completes this
section.

2. Preliminaries

For a complex Banach space (X, || · ||), we denote

BC(X) := {f : R → X; f is continuous , ||f ||∞ := sup
t∈R

||f(t)|| <∞}.

Let Pω(X) := {f ∈ BC(X) : f is continuous : ∃ω > 0, f(t + ω) = f(t), for all t ∈ R} be the
space of all vector-valued periodic functions. We recall that a function f ∈ BC(X) is said to
be almost periodic (in the sense of Bohr) if for any ε > 0, there exists ω = ω(ε) > 0 such that
every subinterval R of length ω contains at least one point τ such that ||f(t+ τ)− f(t)||∞ < ε.
We denote by AP (X) the set of all these functions. The space of compact almost automorphic
functions will be denoted by AAc(X). Recall that function f ∈ BC(X) belongs to AAc(X) if
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and only if for all sequence (s′n)n∈N of real numbers there exists a subsequence (sn)n∈N ⊂ (s′n)n∈N
such that g(t) := limn→∞ f(t+sn) and f(t) = limn→∞ g(t−sn) uniformly over compact subsets
of R. Clearly the function g above is continuous on R. Finally, a function f ∈ BC(X) is said to
be almost automorphic if for every sequence of real numbers (s′n)n∈N there exists a subsequence
(sn)n∈N ⊂ (s′n)n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and
f(t) = lim

n→∞
g(t− sn), for each t ∈ R.

Almost automorphicity, as a generalization of the classical concept of an almost periodic
function, was introduced in the literature by S. Bochner and recently studied by several authors,
including [8, 10, 12, 16, 21, 32] among others. A complete description of their properties and
further applications to evolution equations can be found in the monographs [31] and [33] by G.
M. N’Guérékata.

We recall that AAc(X) and AA(X) are Banach spaces under the norm || · ||∞ and

Pω(X) ⊂ AP (X) ⊂ AAc(X) ⊂ AA(X) ⊂ BC(X).

Now we consider the set C0(X) := {f ∈ BC(X) : lim|t|→∞ ||f(t)|| = 0}, and define the space
of asymptotically periodic functions as APω(X) := Pω(X)⊕C0(X). Analogously, we define the
space of asymptotically almost periodic functions,

AAP (X) := AP (X)⊕ C0(X),

the space of asymptotically compact almost automorphic functions,

AAAc(X) := AAc(X)⊕ C0(X),

and the space of asymptotically almost automorphic functions,

AAA(X) := AA(X)⊕ C0(X).

We have the following natural proper inclusions

APω(X) ⊂ AAP (X) ⊂ AAAc(X) ⊂ AAA(X) ⊂ BC(X).

Denote by SAPω(X) := {f ∈ BC(X) : ∃ω > 0, ||f(t+ ω)− f(t)|| → 0 as t → ∞}. The class of
functions in SAPω(X) is called S-asymptotically ω-periodic. Now, we consider the following set

P0(X) := {f ∈ BC(X) : lim
T→∞

1

2T

∫ T

−T
||f(s)||ds = 0},

and define the following classes of spaces: the space of pseudo-periodic functions

PPω(X) := Pω(X)⊕ P0(X),

the space of pseudo-almost periodic functions

PAP (X) := AP (X)⊕ P0(X),

the space of pseudo-compact almost automorphic functions

PAAc(X) := AAc(X)⊕ P0(X),

and the space of pseudo-almost automorphic functions

PAA(X) := AA(X)⊕ P0(X).
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As before, we also have the following relationship between them;

PPω(X) ⊂ PAP (X) ⊂ PAAc(X) ⊂ PAA(X) ⊂ BC(X).

Denote by N (R, X) or simply N (X) the following function spaces

N (X) : = {Pω(X), AP (X), AAc(X), AA(X), APω(X), AAP (X), AAAc(X), AAA(X),

PPω(X), PAP (X), PAAc(X), PAA(X), SAPω(X), BC(X)}.

We recall that a strongly continuous family {S(t)}t≥0 ⊂ B(X) is say to be uniformly integrable
if

||S|| :=
∫ ∞

0
||S(t)||dt <∞.

The following Theorem is taken from [24].

Theorem 2.1 ([24]). Let {S(t)}t≥0 ⊂ B(X) be a uniformly integrable and strongly continuous
family. If f belongs to one of the spaces of N (X), then∫ t

−∞
S(t− s)f(s)ds,

belongs to the same space as f .

We define the set N (R × X;X) which consists of all continuous functions f : R × X → X
such that f(·, x) ∈ N (R, X) uniformly for each x ∈ K, where K is any bounded subset of X.

We recall from [24] that M(R, X), or simply M(X), denotes one of the spaces Pω(X),
APω(X), PPω(X), SAPω(X), AP (X), AAP (X), PAP (X), AA(X), AAA(X) and PAA(X). De-
fine the set M(R×X,X) of all continuous functions f : R×X → X such that f(·, x) ∈ M(R, X)
uniformly for each x ∈ K, where K is any bounded subset of X. We have the following compo-
sition theorem.

Theorem 2.2 ([24]). Let f ∈ M(R ×X,X) be given and assume that there exists a constant
Lf such that

||f(t, u)− f(t, v)|| ≤ Lf ||u− v||,
for all t ∈ R and u, v ∈ X. If ψ ∈ M(X), then f(·, ψ(·)) ∈ M(X).

Given a function g : R → X, the Weyl fractional integral of order α > 0 is defined by

D−αg(t) :=
1

Γ(α)

∫ t

−∞
(t− s)α−1g(s)ds, t ∈ R,

when this integral is convergent. The Weyl fractional derivatives Dαg of order α > 0 is defined
by

Dαg(t) :=
dn

dtn
D−(n−α)g(t), t ∈ R,

where n = [α]+1. It is known that DαD−αg = g for any α > 0, and Dn = dn

dtn holds with n ∈ N.
See [28] and [29] for more details.

The Mittag-Leffler function (see e.g. [27]) is defined as follows:

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
Ha

eµ
µα−β

µα − z
dµ, α, β > 0, z ∈ C,
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where Ha is a Hankel path, i.e. a contour which starts and ends at −∞ and encircles the disc
|µ| ≤ |z|1/α counterclockwise. The Laplace transform of the Mittag-Leffler function is given by
([17, pp. 267]):

L(tβ−1Eα,β(−ρtα))(λ) =
λα−β

λα + ρ
, ρ ∈ C,Reλ > |ρ|1/α.

Definition 2.3. Let A be a closed and linear operator with domain D(A) defined on a Banach
space X, and α > 0. Given a ∈ L1

loc(R+), we say that A is the generator of an α-resolvent
family, if there exists ω ≥ 0 and a strongly continuous function Sα : [0,∞) → B(X) such that
{ λα

1+â(λ) : Reλ > ω} ⊂ ρ(A) and for all x ∈ X,

(
λα − (1 + â(λ))A

)−1
x =

1

1 + â(λ)

(
λα

1 + â(λ)
−A

)−1

x =

∫ ∞

0
e−λtSα(t)xdt, Reλ > ω.

In this case, {Sα(t)}t≥0 is called the α-resolvent family generated by A.

Remark 2.4.

Observe that if b(t) = gα(t) + (gα ∗ a)(t), (t ≥ 0) where gα(t) = tα−1

Γ(α) and (gα ∗ a)(t) =∫ t
0 gα(t− s)a(s)ds, then, we have that the family α-resolvent {Sα(t)}t≥0 is an (b, gα)-regularized
family. In particular, if a ≡ 0, a 1-resolvent family is the same as a C0-semigroup, whereas that
a 2-resolvent family corresponds to the concept of sine family. See [22, 23] and [25]. Therefore, if
A is the generator of an α-resolvent family {Sα(t)}t≥0 then by [22, Proposition 3.1 and Lemma
2.2] we have that, {Sα(t)}t≥0 verify the following properties:

i) Sα(0) = gα(0);
ii) Sα(t)x ∈ D(A) and Sα(t)Ax = ASα(t)x for all x ∈ D(A) and t ≥ 0;

iii) Sα(t)x = gα(t)x+
∫ t
0 b(t− s)ASα(s)xds, for all x ∈ D(A) and t ≥ 0;

iv)
∫ t
0 b(t− s)Sα(s)xds ∈ D(A) and Sα(t)x = gα(t)x+ A

∫ t
0 b(t− s)Sα(s)xds, for all x ∈ X

and t ≥ 0.

Sufficient conditions for {Sα(t)}t≥0 ⊂ B(X) to be a resolvent family can be obtained from
[22, Theorem 3.4] and [25, Theorems 4.1,4.3].

3. Bounded mild solutions to the linear case

Consider the following linear equation

(3.5) Dαu(t) = Au(t) + (a∗̇Au)(t) + f(t), t ∈ R,

where (a∗̇Au)(t) =
∫ t
−∞ a(t−s)Au(s)ds. Assume that A is the generator of an α-resolvent family

{S(t)}t≥0 which is uniformly integrable. Given f ∈ N (X), let ϕ(t) be the function given by

(3.6) ϕ(t) :=

∫ t

−∞
Sα(t− s)f(s)ds, t ∈ R.

Then, ||ϕ||∞ ≤ ||Sα|| ||f ||∞. If f(t) ∈ D(A) for all t ∈ R, then ϕ(t) ∈ D(A) for all t ∈ R (see
[7, Proposition 1.1.7]). Since {Sα(t)}t≥0 is integrable, ϕ ∈ N (X) by Theorem 2.1. Assume that
Dαϕ exists. Let b(t) = gα(t) + (gα ∗ a)(t), and n = [α] + 1. We obtain by Remark 2.4 and from
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Fubini’s theorem that

Dαϕ(t) =
dn

dtn

∫ t

−∞
gn−α(t− s)ϕ(s)ds

=
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
Sα(s− r)f(r)drds

=
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞

[
gα(s− r)f(r) + (b ∗ASα)(s− r)f(r)

]
drds

=
dn

dtn

∫ t

−∞
gn−α(t− s)D−αf(s)ds+

dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞

∫ s−r

0
b(s− r − v)ASα(v)f(r)dvdrds

= f(t) +
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
[gα(s− w) +

(gα ∗ a)(s− w)]

∫ w

−∞
ASα(w − r)f(r)drdwds

= f(t) +
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
gα(s− w)Aϕ(w)dwds+

dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
(gα ∗ a)(s− w)Aϕ(w)dwds

= f(t) +Aϕ(t) +
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞

∫ v

−∞
gα(s− v)a(v − w)Aϕ(w)dwdvds

= f(t) +Aϕ(t) +
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
gα(s− v)(a∗̇Aϕ)(v)dvds

= f(t) +Aϕ(t) + (a∗̇Aϕ)(t).

That is, ϕ is a (strict) solution of Eq. (3.5). Since in general, we have only f(t) ∈ X or that
Dαϕ does not exists, in what follows, we will say that ϕ(t) defined by (3.6) is a mild solution of
Eq. (3.5).

Theorem 3.5. Assume that A generates an α-resolvent family {Sα(t)}t≥0 such that

||Sα(t)|| ≤ ϕα(t), for all t ≥ 0 with ϕα ∈ L1(R+).

If f ∈ N (X), then the equation (3.5) has a unique mild solution u ∈ N (X).

Proof. If f ∈ N (X), then u defined by u(t) :=
∫ t
−∞ Sα(t − s)f(s)ds is well defined and by

Theorem 2.1, u ∈ N (X). Therefore, u is the unique mild solution of (3.5). �

In what follows, we denote eα,β(t) = tβ−1Eα,β(−ρtα), ρ ∈ R. It is known that ([17, pp. 268])
for 0 < α ≤ β < 1,

(3.7) eα,β(t) =
1

π

∫ ∞

0
e−rtKα,β(r)dr, t ≥ 0,
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where

(3.8) Kα,β(r) =
[rα sin(βπ) + ρ sin((β − α)π)]

r2α + 2ρrα cos(απ) + ρ2
rα−β.

The following result shows that a similar representation to (3.7) of eα,β holds if 1 < β ≤ α < 2.

Proposition 3.6. Let 1 < β ≤ α < 2, and ρ ∈ R. For all t ≥ 0 we have:
(3.9)

eα,β(t) =
1

π

∫ ∞

0
e−rtKα,β(r)dr +

2

α
ρ(1−β)/αeρ

1/αt cos(π/α) cos

(
ρ1/αt sin(π/α) +

(1− β)π

α

)
,

where, Kα,β is defined by (3.8).

Proof. Follows the same lines of [4] and [17]. From the inversion complex formula for the Laplace
transform, we have

eα,β(t) =
1

2πi

∫
Br

eλt
λα−β

λα + ρ
dλ,

where Br denotes the Bromwich path, i.e. a line Re(λ) = σ ≥ ρ1/α and Im(λ) running from −∞
to ∞. As in [17] we obtain a decomposition of eα,β in two parts,

eα,β(t) = fα,β(t) + gα,β(t),

where by a Titchmarsch’s formula (see [27, pp. 225])

fα,β(t) =
1

π

∫ ∞

0
e−rtIm

(
λα−β

λα + ρ

∣∣∣∣
λ=reiπ

)
dr

=
1

π

∫ ∞

0
e−rt [r

α sin(βπ) + ρ sin((β − α)π)]

r2α + 2ρrα cos(απ) + ρ2
rα−βdr

and

gα,β(t) = es0tRes

(
λα−β

λα + ρ

)∣∣∣∣
s0

+ es1tRes

(
λα−β

λα + ρ

)∣∣∣∣
s1

=
1

α
(es0ts1−β

0 + es1ts1−β
1 ),

where s0 = ρ1/αeiπ/α and s1 = ρ1/αe−iπ/α are the poles of λα−β

λα+ρ (1 < β ≤ α < 2). Therefore

(3.10) gα,β(t) =
2

α
ρ(1−β)/αeρ

1/αt cos(π/α) cos

(
ρ1/αt sin(π/α) +

(1− β)π

α

)
.

�
Remark 3.7. We notice that if 0 < β ≤ α < 1, then λα−β

λα+ρ has no poles, and as consequence

gα,β(t) = 0, t ≥ 0. Hence, if 0 < β ≤ α < 1, then

eα,β(t) = fα,β(t) =
1

π

∫ ∞

0
e−rtKα,β(r)dr.

Remark 3.8. Since for 1 < β ≤ α < 2, 0 = eα,β(0) = fα,β(0) + gα,β(0) we obtain from (3.9) and
(3.10) that

(3.11)
1

π

∫ ∞

0
Kα,β(r)dr = − 2

α
ρ(1−β)/α cos

(
(1− β)π

α

)
.

Lemma 3.9. If 0 < β ≤ α < 1 and ρ > 0, then eα,β ∈ L1(R+).
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Proof. By Remark 3.7, gα,β(t) = 0 for all t ≥ 0. First, we prove the Lemma in the case 0 < β <
α < 1. An easy computation using complex analysis (see [20, pp. 199]) shows that if 0 < |γ| < 1
and 0 < |θ| < π then

(3.12)

∫ ∞

0

xγ

x2 + 2xa cos θ + a2
dx = aγ−1 π

sin γπ

sin γθ

sin θ
, a > 0.

Applying Fubini’s theorem and noting that Kα,β(r) = rKα,β+1(r), we get∫ ∞

0
|fα,β(t)|dt ≤ 1

π

∫ ∞

0

∫ ∞

0
e−rt|Kα,β(r)|drdt

=
1

π

∫ ∞

0
r−1|Kα,β(r)|dr

=
1

π

∫ ∞

0
|Kα,β+1(r)|dr

=
1

π

∫ ∞

0

|rα sin((β + 1)π) + ρ sin(((β + 1)− α)π)|
r2α + 2ρrα cos(απ) + ρ2

rα−(β+1)dr

≤ 1

π

∫ ∞

0

r2α−(β+1)

r2α + 2ρrα cos(απ) + ρ2
dr +

ρ

π

∫ ∞

0

rα−(β+1)

r2α + 2ρrα cos(απ) + ρ2
dr

:= I1 + ρI2.

With the change of variable x = rα, we obtain by (3.12) that

I1 =
1

απ

∫ ∞

0

x1−β/α

x2 + 2xρ cos(απ) + ρ2
dx =

1

α
ρ−β/α sin((α− β)π)

sinαπ sin β
απ

and

I2 =
1

απ

∫ ∞

0

x−β/α

x2 + 2xρ cos(απ) + ρ2
dx =

1

α
ρ−(1+β/α) sinβπ

sinαπ sin β
απ

,

since −1 < 1− β/α < 1 and −1 < −β/α < 1 when 0 < β < α < 1. Hence,∫ ∞

0
|fα,β(t)|dt ≤ 1

α
ρ−β/α sin((α− β)π)

sinαπ sin β
απ

+
1

α
ρ−β/α sinβπ

sinαπ sin β
απ

<∞.

For 0 < β = α < 1, we have∫ ∞

0
|fα,α(t)|dt ≤ 1

π

∫ ∞

0
|Kα,α+1(r)|dr

=
sin(απ)

π

∫ ∞

0

rα−1

r2α + 2ρrα cos(απ) + ρ2
dr

=
sin(απ)

απ
ρ−1

∫ ∞

0

1

x2 + 2x cos(απ) + 1
dx

=
ρ−1

απ

(π
2
− arctan(cot(απ))

)
<∞.

�
Lemma 3.10. If 1 < β ≤ α < 2 and ρ > 0, then eα,β ∈ L1(R+).



MILD SOLUTIONS 9

Proof. The case α = β is contained in the proof of [4, Corollary 3.7]. We prove here the lemma
for 1 < β < α < 2. From Proposition 3.6, eα,β(t) = fα,β(t) + gα,β(t). Since

|gα,β(t)| ≤
2

α
ρ(1−β)/αeρ

1/αt cos(π/α)

and cos(π/α) < 0 for 1 < α < 2, we obtain that∫ ∞

0
|gα,β(t)|dt <∞.

Since for 1 < β < α < 2, 0 < 1 − β/α < 1/2 and −1 < −β/α < −1/2, we have that
fα,β ∈ L1(R+) by (3.12) as in Lemma 3.9. �

The following Corollary is a direct consequence of Theorem 3.5, Lemmas 3.9 and 3.10. The
case α = 1 is proved in [24, Corollary 3.6].

Corollary 3.11. Let f ∈ N (X) and let ρ > 0 be a real number. Then, for all 0 < α < 2 the
equation

Dαu(t) = −ρu(t) + f(t), t ∈ R,
has a unique mild solution u which belongs to the same space as that of f and is given by

u(t) =

∫ t

−∞
Sα,α(t− s)f(s)ds,

where, for t ≥ 0,

(3.13) Sα,α(t) =
1

π
sinπα

∫ ∞

0
e−rt rα

r2α + 2rαρ cosπα+ ρ2
dr, if 0 < α < 1,

and
(3.14)

Sα,α(t) =
1

π

∫ ∞

0
e−rtKα,α(r)dr−

2

α
ρ(1−α)/αeρ

1/αt cos(π/α) cos
(
ρ1/αt sin

(π
α

)
+
π

α

)
, if 1 ≤ α < 2.

Remark 3.12. By [4, pp. 3700], if 1 < α = β < 2, then

(3.15)

∫ ∞

0
|eα,α(t)|dt ≤

2

αρ
− 1

ρ
− 2

αρ

1

cos(π/α)
:= l(α, ρ).

4. Bounded mild solutions to semilinear case

In this section, we consider the semilinear differential equation

(4.16) Dαu(t) = Au(t) + (a∗̇Au)(t) + f(t, u(t)), t ∈ R,
where A is the generator of an α-resolvent family. Motivated by the section 3, we define the
concept of mild solution to equation (4.16) as follows.

Definition 4.13. Let α > 0 and A be the generator of an α-resolvent family {Sα(t)}t≥0. A
function u ∈ C(R, X) is called a mild solution to equation (4.16) if the function s 7→ Sα(t −
s)f(s, u(s)) is integrable on (−∞, t) for each t ∈ R and

(4.17) u(t) =

∫ t

−∞
Sα(t− s)f(s, u(s))ds, t ∈ R.

The following is the main result in this section.
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Theorem 4.14. Assume that A generates an α-resolvent family {Sα(t)}t≥0 such that

||Sα(t)|| ≤ ϕα(t), for all t ≥ 0 with ϕα ∈ L1(R+).

If f ∈ M(R×X,X) satisfies

(4.18) ||f(t, u)− f(t, v)|| ≤ L||u− v||, for all t ∈ R, and u, v ∈ X,

where L < ||ϕα||−1
1 . Then the equation (4.16) has a unique mild solution u ∈ M(X).

Proof. Define the operator F : M(X) → M(X) by

(4.19) (Fϕ)(t) :=

∫ t

−∞
Sα(t− s)f(s, ϕ(s)) ds, t ∈ R.

By Theorems 2.1 and 2.2, F is well defined. For ϕ1, ϕ2 ∈ M(X) and t ∈ R we have:

||(Fϕ1)(t)− (Fϕ2)(t)|| ≤
∫ t

−∞
||Sα(t− s)[f(s, ϕ1(s))− f(s, ϕ2(s))]||ds

≤
∫ t

−∞
L∥Sα(t− s)∥ · ∥ϕ1(s)− ϕ2(s)∥ds

≤ L∥ϕ1 − ϕ2∥∞
∫ t

−∞
ϕα(t− s)ds

= L∥ϕ1 − ϕ2∥∞||ϕα||1.
This prove that F is a contraction, so by the Banach fixed point theorem there exists a unique
u ∈ M(X) such that Fu = u. �

The following result is a consequence of Theorem 4.14, Lemmas 3.9 and 3.10, and it is an
extension of the case α = 1 proved in [10, Theorem 3.2].

Corollary 4.15. Let ρ > 0 be a real number. Let f ∈ M(R×X,X) such that

(4.20) ||f(t, u)− f(t, v)|| ≤ L||u− v||, for all t ∈ R, and u, v ∈ X,

where L < l(α, ρ)−1, and l(α, ρ) is defined by (3.15). Then, for all 0 < α < 2 the equation

Dαu(t) = −ρu(t) + f(t, u(t)), t ∈ R,

has a unique mild solution u ∈ M(X) which is given by

u(t) =

∫ t

−∞
Sα,α(t− s)f(s, u(s))ds,

where Sα,α is defined by (3.13) if 0 < α < 1 and by (3.14) if 1 ≤ α < 2.

A different condition is considered in the following result. Recall that an strongly continuous
family {S(t)}t≥0 ⊂ B(X) is said to be uniformly bounded if there exists a constant M > 0 such
that ||S(t)|| ≤M for all t ≥ 0.

Theorem 4.16. Assume that A generates an α-resolvent uniformly bounded family {Sα(t)}t≥0

on a Banach space X. If f ∈ M(R×X,X) satisfies

(4.21) ||f(t, u)− f(t, v)|| ≤ L(t)||u− v||, for all t ∈ R, and u, v ∈ X,

where L ∈ L1(R+) ∩BC(R+). Then the equation (4.16) has a unique mild solution u ∈ M(X).
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Proof. Define the operator F as in (4.19). For ϕ1, ϕ2 ∈ M(X) and t ∈ R we have:

||(Fϕ1)(t)− (Fϕ2)(t)|| ≤
∫ t

−∞
||S(t− s)[f(s, ϕ1(s))− f(s, ϕ2(s))]||ds

≤ M ||ϕ1 − ϕ2||∞
∫ ∞

0
Lf (t− τ)dτ

= M ||ϕ1 − ϕ2||∞
∫ t

−∞
Lf (s)ds.

In general we get

||(Fnϕ1)(t)− (Fnϕ2)(t)|| ≤ ||ϕ1 − ϕ2||∞
Mn

(n− 1)!

(∫ t

−∞
Lf (s)

(∫ s

−∞
Lf (τ)dτ

)n−1

ds

)

≤ ||ϕ1 − ϕ2||∞
Mn

n!

(∫ t

−∞
Lf (s)ds

)n

≤ ||ϕ1 − ϕ2||∞
(||Lf ||1M)n

n!
.

Hence, since
(||Lf ||1M)n

n! < 1 for n sufficiently large, by the contraction principle F has a unique
fixed point u ∈ M(X).

�

Example 4.17.

Let A = −ρI and a(t) = ρ
4
tα−1

Γ(α) , where 0 < α < 1 and ρ > 0. From equation (4.16) we have

(4.22) Dαu(t) = −ρu(t)− ρ

∫ t

−∞

(t− s)α−1

Γ(α)
u(s)ds+ f(t, u(t)), t ∈ R.

Using the Laplace transform, we obtain from Remark 2.4 that A generates an α−resolvent family
{Sα(t)}t≥0 such that

Ŝα(λ) =
λα

(λα + ρ/2)2
=

λα−α/2

(λα + ρ/2)
· λα−α/2

(λα + ρ/2)
.

Hence, Sα(t) = (r ∗ r)(t), where r(t) = t
α
2
−1Eα,α/2(−ρ

2 t
α). By Lemma 3.9, Sα ∈ L1(R+).

Therefore, if f ∈ M(R×X,X) and

||f(t, u)− f(t, v)|| ≤ L ||u− v||, for all t ∈ R, and u, v ∈ X,

where L < ||Sα||−1, then, there exists a unique mild solution u ∈ M(X) of equation (4.22), by
Theorem 4.14.

Example 4.18.

Take α = 1/2, A = −ρI and a(t) = γe−βt, with β, ρ > 0 and γ ∈ R in equation (4.16), that is

(4.23) D
1
2u(t) = −ρu(t)− γρ

∫ t

−∞
e−β(t−s)u(s)ds+ f(t, u(t)), t ∈ R.
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Using the Laplace transform and Remark 2.4, we have that A generates an 1/2−resolvent family
{S1/2(t)}t≥0 such that

Ŝ1/2(λ) =
λ+ β

λ3/2 + λρ+ λ1/2β + ρ(β + γ)

=
λ+ β

(λ1/2 − r1)(λ1/2 − r2)(λ1/2 − r3)
,

where r1, r2, r3 are the roots (real or complex) of

(4.24) z3 + ρz2 + βz + ρ(β + γ).

Observe that

Ŝ1/2(λ) =
λ1/2−1/6

(λ1/2 − r1)
· λ1/2−1/6

(λ1/2 − r2)
· λ1/2−1/6

(λ1/2 − r3)
+

β

(λ1/2 − r1)(λ1/2 − r2)(λ1/2 − r3)
,

and therefore,

S1/2(t) = (R1 ∗R2 ∗R3)(t) + β(T1 ∗ T2 ∗ T3)(t),

where Ri(t) = t1/6−1E1/2,1/6(rit
1/2) and Ti(t) = t1/2−1E1/2,1/2(rit

1/2), i = 1, 2, 3. If ri < 0,

(i = 1, 2, 3) then S1/2 ∈ L1(R+) by Lemma 3.9. Now, we want to find conditions on ρ, β and γ
to ensure that the roots of Eq. (4.24) are negative.

We recall that the roots r1, r2, r3 of Eq. (4.24) verify

r1 + r2 + r3 = −ρ,(4.25)

r1r2 + r2r3 + r1r3 = β,(4.26)

r1r2r3 = −ρ(β + γ),(4.27)

that the discriminant of Eq. (4.24) is given by

(4.28) D := ρ2(β + γ)[18β − 4ρ2 − 27(β + γ)] + β2(ρ2 − 4β),

and if D ≥ 0, then the equation (4.24) has three real roots.
Assume that D ≥ 0. Observe that if γ > −β, then r1r2r3 = −ρ(β+γ) < 0. In this case, either

all roots of Eq. (4.24) are negative, or one root of Eq. (4.24) is negative (say r1) and the others,
r2, r3, are positive. Using (4.25)-(4.27) we will see that this last case gives us a contradiction.
Multiplying (4.26) by r1, r2 and r3, we have

r21r2 + r1r2r3 + r21r3 = βr1,

r1r
2
2 + r22r3 + r1r2r3 = βr2,

r1r2r3 + r2r
2
3 + r1r

2
3 = βr3.

Thus, by (4.25) and (4.27) we obtain,

r21(r2 + r3)− r22(r1 + r3)− r23(r1 + r2)− r1r2r3 = β(−ρ− 2(r2 + r3)) < 0.

Since r1 < 0, r2, r3 > 0, and r1 + r2 + r3 = −ρ then r1 + r3 < 0 and r1 + r2 < 0. This is gives
us a contradiction. Therefore, if

(4.29) D ≥ 0 and γ > −β,

then all roots r1, r2, r3 of (4.24) are negative.
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We conclude that if ρ, β and γ verify the condition (4.29) and f ∈ M(R×X,X) satisfy

||f(t, u)− f(t, v)|| ≤ L ||u− v||, for all t ∈ R, and u, v ∈ X,

where L < ||Sα||−1, then by Theorem 4.14, there exists a unique mild solution u ∈ M(X) of
equation (4.23).

A description of the area in the plane where we can choose β and γ in order to have uniform
integrability of S1/2(t) for ρ > 0, is shown in the hatched sector of the following figure. In
particular, we note that if ρ = 1, then the point (γ, β) = (−0.24, 0.23) belongs to the hatched
area. In this case r1 = −0.05258063414, r2 = −0.2887319147 and r3 = −0.6586874512. Similarly,
if ρ = 2, γ = −0.8 and β = 0.81, then r1 = −0.02638799777, r2 = −0.5221924489, and
r3 = −1.451419553.
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[14] T. Diagana, G. M. N’Guérékata, N. van Minh. Almost automorphic solutions of evolution equations, Proc.

Amer. Math. Soc. 132 (11) (2004), 3289-3298.
[15] T. Furumochi, T. Naito, N. Minh. Boundedness and Almost Periodicity of Solutions of Partial Functional

Differential Equations, J. Differential Equations 180 (2002), 125-152.
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